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ABSTRACT

Virtual analog synthesis requires bandlimited source signal algo-
rithms. An efficient methodology for the task expresses the tradi-
tionally used source waveforms or their time-derivatives as a se-
quence of bandlimited impulses or step functions. Approximations
of the ideal bandlimited functions used in these quasi-bandlimited
oscillator algorithms are typically linear-phase functions. In this
paper, a general nonlinear-phase approach to the task is proposed.
The discussed technique transforms an analog prototype filter to
a digital filter using a modified impulse invariance transformation
method that enables the impulse response to be sampled with ar-
bitrary sub-sample shifts. The resulting digital filter is a set of
parallel first- and/or second-order filters that are excited with short
burst-like signals that depend on the offset of the waveform discon-
tinuities. The discussed approach is exemplified with a number of
design cases, illustrating different trade-offs between good alias
reduction and low computational cost.

1. INTRODUCTION

Virtual analog synthesizers have become an important part of mu-
sic synthesizer business. These software synthesizers emulate the
subtractive sound synthesis principle utilized in early analog syn-
thesizers of the 1960s and 1970s using digital signal processing
methods. In subtractive sound synthesis, a spectrally rich source
signal is filtered with a time-varying lowpass filter that has a con-
trollable resonance. Traditionally, the source signal is a periodic
classical waveform, such as the sawtooth, rectangular, or triangle
wave, or a mix of the aforementioned waveforms [1, 2].

In virtual analog synthesis, it is necessary to have bandlimited
oscillator algorithms for the source signals. Trivial digital gen-
eration of the periodic classical waveforms suffers from aliasing
distortion that is caused by the discontinuities in the waveform or
waveform derivative, which effectively produce an infinite number
of harmonic components [3–6]. Furthermore, since the spectra of
the classical waveforms decay gently, the aliasing distortion be-
comes clearly audible especially at high fundamental frequencies.
Figure 1 shows an example of the aliasing problem with a rect-
angular waveform having fundamental frequency f0 = 3.0 kHz
and a duty cycle (or pulse width) of 25%. Sampling rate fs =
44.1 kHz is used in the example. The crosses in Fig. 1(b) indicate
the non-aliased components, the rest of the spectrum is aliasing
distortion.

Many discrete-time methods that generate classical-waveform-
like signals containing less aliasing than the trivially sampled wave-
forms have been developed. These methods approach the aliasing
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Figure 1: (a) Waveform of a continuous-time rectangular waveform
(solid line) having fundamental frequency f0 = 3.0 kHz and a duty
cycle of 25% and (b) the spectrum of its trivially sampled digital
representation. The dots in (a) represent the sampled data when
the sampling rate fs is 44.1 kHz. The crosses in (b) indicate the
non-aliased harmonics components of the digital signal. Note that
due to the choice of duty cycle no harmonic is present at 12 kHz.

problem from different viewpoints and the level of aliasing is re-
duced differently in each method. The applied techniques can be
roughly categorized into four different groups [7–12]:

1. ideally bandlimited algorithms,

2. quasi-bandlimited algorithms,

3. alias-suppressing algorithms, and

4. ad-hoc algorithms.

The ideally bandlimited methods generate only a predefined,
fixed number of harmonic components, resulting in completely
alias-free waveforms. The quasi-bandlimited algorithms synthesize
signals that contain aliasing mainly at high frequencies where hu-
man hearing is less sensitive to aliasing distortion than at low and
middle frequencies. The alias-suppressing methods have aliasing
in the whole audio band but suppressed compared to the trivial
approach. The ad-hoc algorithms produce classical-waveform-like
signals using simple (nonlinear) processing techniques.
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The first three algorithm groups can be interpreted to have a
close connection to the sampling of continuous-time signals. The
alias-suppressing methods can be understood to sample a signal that
has the same spectral content as the target waveform but whose spec-
trum rolls off at a steeper rate than the target, hence resulting in a
lowered aliasing distortion [7,9,11,12]. The ideally bandlimited al-
gorithms, in turn, simulate the sampling of ideally lowpass-filtered
classical waveforms [7, 11, 12].

The quasi-bandlimited methods can also be interpreted to sam-
ple lowpass-filtered continuous-time waveforms. However, the
lowpass filter is not the ideal filter, like in the ideally bandlim-
ited algorithms, but a realizable filter that has a non-infinitesimal
transition band [7, 8, 11–13]. The discrete-time quasi-bandlimited
oscillator algorithms proposed so far typically use linear-phase
approximations of the impulse or unit step response of the ideal
lowpass filter. In this paper, nonlinear-phase approximations of the
ideal filter responses, the basis functions of quasi-bandlimited algo-
rithms, are discussed and their applicability to the alias reduction
task is investigated.

The remainder of this paper is organized as follows. Section 2
provides the mathematical motivation of the quasi-bandlimited os-
cillator algorithms by reviewing the derivation of the ideal basis
functions. The previously proposed approximations of the ideal
basis functions are also briefly discussed. In Sec. 3, the use of
nonlinear-phase basis functions in quasi-bandlimited oscillator al-
gorithms is discussed. A time-varying extension to the proposed
approach is presented in Sec. 4. In addition, design examples are
provided. Finally, Sec. 5 concludes the paper.

2. QUASI-BANDLIMITED OSCILLATOR ALGORITHMS

The concept of quasi-bandlimited waveform synthesis was first
introduced by Stilson and Smith in 1996 [14]. They noted that by
differentiating (twice in the case of the triangle wave) a continuous-
time classical waveform with respect to time one obtains a sequence
of impulse functions (with a DC offset in the case of the sawtooth
wave). For example, differentiation of a rectangular pulse wave that
has a duty cycle P yields

d

dt
r(t;P ) = 2

∞∑
k=−∞

(δ(t− kT0)− δ(t− (k + P )T0)) , (1)

where t is the time variable (in seconds), T0 = 1/f0 is the os-
cillation period in seconds and δ(x) is the Dirac delta (impulse)
function that is zero when x 6= 0 and that satisfies the condition∫ ∞

−∞
δ(x) dx =

∫ 0+

0−
δ(x) dx = 1. (2)

Now, by filtering the impulse train with a lowpass filter, every
impulse of the sequence is replaced with the impulse response of
the lowpass filter [14, 15]. This bandlimited impulse train (BLIT)
can be synthesized in the digital domain by computing the impulse
response values. After the impulse response values have been gen-
erated, the resulting impulse train is (numerically) integrated (again,
twice in the case of the triangle wave) to obtain the bandlimited
waveform [14, 15].

When the lowpass filter is ideal, the BLIT approach effectively
produces the same result as the ideally bandlimited oscillator algo-
rithms [14, 15]. However, since the impulse response of the ideal

lowpass filter is the well-known sinc function,

hid(t) = 2fcsinc(2fct) =
sin(2πfct)

πt
, (3)

where fc is the cutoff frequency of the filter, the ideal BLIT ap-
proach is unimplementable. Because the sinc function is infinitely
long, infinitely many values would be required to be summed at
every sampling instant [14, 15]. Therefore, approximations of the
ideal bandlimited impulse function have been proposed.

Stilson and Smith proposed that the sinc function, the basis
function of the BLIT approach, is windowed to get an imple-
mentable algorithm [14]. The windowed sinc function is then
sampled and tabulated, and the impulse response values are read
from the table in the BLIT synthesizer [7, 14, 15]. However, to ob-
tain a good alias reduction performance the table needs to be quite
long [7, 16, 17]. Furthermore, since the oscillation period T0 can be
arbitrary, the impulses can be located arbitrarily between the sam-
pling points. This means that the tabulated impulse function needs
to be oversampled to achieve improved accuracy in computing the
impulse function values from the table entries [7, 14, 15].

Recently, it has been shown that the alias reduction perfor-
mance of the table-based BLIT algorithm can be improved by
sampling a controllable function or by optimizing the table en-
tries by minimizing a perceptually informed cost function when
the table is short [17]. Because of the poor performance of the
windowed sinc function, various alternative basis functions have
been proposed. These other approximations improve the alias re-
duction performance significantly compared to the performance of
the windowed sinc function of the same effective length. These
improved basis function generators utilize modified frequency mod-
ulation [18], feedback delay loops [19, 20], and fractional delay
filters [8,13,20] as the method to approximate the ideal bandlimited
impulse function.

Unfortunately, the BLIT approach can suffer from numerical
problems that are caused by the integration process required to
produce the actual waveform. If the impulse response values are
not exact, the integration may cause the output to have a drifting
DC component. To overcome this issue, Brandt suggested that the
integration is performed with a second-order leaky integrator that
blocks the DC component and that approximates the integrator well
at other frequencies [21].

Furthermore, Brandt suggested that the DC issue of the BLIT
approach can be avoided by integrating the BLIT basis function
in advance [21]. This proposal is justified by the fact that the
integration of a continuous-time non-bandlimited impulse train
results in a sequence of step functions. Using this approach, the
rectangular pulse waveform is expressed as

r(t;P ) = 2

∞∑
k=−∞

(u(t− kT0)− u(t− (k + P )T0))− 1, (4)

where u(x) is the Heaviside unit step function

u(x) =

∫ x

−∞
δ(τ) dτ =


0, for x < 0,

0.5, for x = 0, and
1, for x > 0.

(5)

By applying the same reasoning as for the bandlimited impulse
function train, integration of the ideal BLIT basis function results in
an ideal bandlimited unit step function that can be used to synthesize
the bandlimited waveform directly [21].
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The ideal bandlimited step function, i.e. the integral of the
sinc function and hence the basis function of the bandlimited step
function (BLEP) approach, can also be expressed in closed form
as [12]

hIid(t) =

∫ t

−∞
2fcsinc(2fcτ) dτ =

1

2
+

1

π
Si(2πfct), (6)

where Si(x) is a function called the Sine integral [22]. Like the
sinc function, the ideal BLEP basis function is also infinitely long.
Therefore, it also needs to be approximated to have an imple-
mentable BLEP synthesizer. Again, approximations of the ideal
BLEP basis function have been developed.

Brandt suggested that the minimum-phase representation of the
windowed sinc function is accumulated to produce an approxima-
tion of the bandlimited step function [21]. Other basis functions
proposed for the task utilize tabulated correction functions [23] and
polynomial functions [7, 12, 13, 16, 24], some of which are in fact
integrals of the basis functions proposed for the fractional delay
filter BLIT oscillator.

Now, note that the basis functions of the BLIT and BLEP meth-
ods are linear-phase. Although the basis functions approximations
do not necessarily need to be linear-phase, most of the existing ones
are. The only nonlinear-phase approximations are generated by the
allpass fractional delay filter BLIT oscillator [8], the feedback delay
loop BLIT oscillator [19], and by the accumulated minimum-phase
windowed-sinc function approximation [21].

The allpass fractional delay filter BLIT oscillator [8] and the
feedback delay loop BLIT oscillator [19] both use allpass fractional
delay filters as a part of the impulse generation algorithm. However,
allpass filters do not have a well-defined continuous-time represen-
tation of their outputs. Therefore, these approaches can only be
loosely interpreted to generate a nonlinear-phase approximation of
the BLIT basis function.

The minimum-phase algorithm proposed by Brandt [21], on the
other hand, is much closer to the idea of having a nonlinear-phase
basis function than the other approaches. The minimum-phase
representation of the BLIT basis function was, however, computed
from the windowed and sampled sinc function approximation [21].
Therefore, it cannot be considered to be a direct nonlinear-phase
basis function as is.

3. TIME-INVARIANT NONLINEAR-PHASE BASIS
FUNCTIONS

Clearly, the desired basis functions have a lowpass-type ampli-
tude response. While there are direct discrete-time methods with
which digital lowpass filters that have nonlinear-phase response
can be designed [25], the digital filters are typically designed us-
ing transformed analog filter design techniques. In such methods,
the amplitude response of the filter is designed in the continuous-
time domain using well-established analog filter design techniques.
Then, the digital representation of this basis function, which is
efficiently generated with a recursive digital filter, is obtained by
transforming the analog filter into digital domain using an appropri-
ate transformation method [25].

It should be noted that the unit step response of a filter is the
integral of the filter’s impulse response. This relation means that the
BLEP basis functions can be interpreted to be integrated BLIT basis
functions. Therefore, the discussion given henceforth is applied
only to BLIT basis functions because the derivation for the BLEP

basis function does not differ greatly from the derivation for the
BLIT basis functions.

The common transformation methods include the impulse in-
variance, the bilinear transform, and the matched z-transform tech-
niques. The impulse invariance method maps the continuous-time
impulse response of an analog filter into a digital filter that gener-
ates sampled values of the analog response [26]. Effectively, the
frequency response of the analog filter is aliased due to the sampling
process.

The bilinear transform, on the other hand, maps the frequency
response of the analog filter to the baseband of the digital sys-
tem [25]. The matched z-transform maps the poles and zeros of
the analog filter to poles and zeros of a digital filter that has ap-
proximately the same frequency response as the analog filter in the
baseband [15, 27].

After a digital filter whose output is the desired basis function
is obtained, the bandlimited sequence of basis functions can be gen-
erated by triggering the filter every time a discontinuity is detected.
The discontinuities are detected by looking for large changes in the
waveform (in case of sawtooth and rectangular pulse wave) or in the
waveform derivative (in case of triangle wave). However, since the
discontinuities are in general not at specific sampling instants, they
can be detected at the instant following the discontinuity. Hence,
the triggering can only happen at the sampling instants following
the discontinuities, which means that the generated basis function
is slightly delayed with respect to the actual discontinuity location.

Obviously, the discontinuity detection can be developed to be
predictive, i.e. the algorithm could detect the discontinuity before it
will happen. However, also this approach would cause the generated
basis functions to be misaligned in time. Therefore, predictive
discontinuity detection does not provide any improvements to the
trivial (post-discontinuity detection) approach.

In general, the delay of the generated basis functions varies
from a discontinuity to another. Due to the discontinuity-dependent
delay, the approach described above causes the oscillation period
to vary erratically around its nominal value. The period dithering
does not reduce aliasing much and it introduces frequencies that
should not be present in the waveform.

An example of the dithering effects is given in Fig. 2 where the
spectra of the basis function train and the rectangular pulse wave
generated with the described time-invariant technique are plotted.
In this example, f0 = 3 kHz, fs = 44.1 kHz, and the filter that
generates the basis functions is a fourth-order Butterworth filter
whose cutoff frequency is 75% of the Nyquist limit and that has
been transformed to a digital filter with the impulse invariance
technique. The rectangular pulse waveform (having a duty cycle of
25%) was generated by summing time-shifted step responses of the
filter.

Figure 2 shows that the produced signals still contain a lot of
aliasing. By comparing Figs. 2(b) and 1(b) one can see that the
aliasing distortion of the rectangular pulse wave is not reduced
much. Moreover, the fourth harmonic that should not be present
due to the particular choice of duty cycle has a substantial amplitude
and the relative levels of the non-aliased harmonics are not as they
should be (see Fig. 1(b)).

It should be noted that the issues of the period dithering happen
with every transformation technique. To overcome these issues, an
extended technique that allows arbitrarily sampled discrete-time
basis functions is developed next.
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Figure 2: (a) Spectrum of the basis function train and (b) the
spectrum of the rectangular pulse wave generated with the time-
invariant technique. The crosses indicate the non-aliased com-
ponents. The fundamental frequency f0 = 3 kHz, the sampling
frequency fs = 44.1 kHz, and the filter that generates the basis func-
tions is a fourth-order Butterworth filter whose cutoff frequency is
75% of the Nyquist limit and that has been transformed to a digital
filter with the impulse invariance technique. The rectangular pulse
waveform (having a duty cycle of 25%) was generated by summing
time-shifted, impulse-invariance transformed step responses of the
analog prototype filter.

4. TIME-VARYING NONLINEAR-PHASE BASIS
FUNCTIONS

4.1. Description of the Proposed Technique

Of the filter transformation techniques mentioned above, only the
impulse invariance method enables the discrete-time impulse re-
sponse to be generated at arbitrary time shifts. The bilinear and
matched z-transform apply the transformation in the pole-zero do-
main and therefore they do not have a well-defined continuous-time
impulse response that they can be understood to sample.

The time-varying extension of the impulse invariance method
starts, like the time-invariant technique, by deriving the partial
fraction expansion of the transfer function of the analog filter [26].
Because the underlying analog filter is a lowpass filter, the order
of the transfer function denominator is lower that the order of its
numerator. Therefore, the analog transfer function H(s) can be
decomposed into first-order sections,

H(s) =

N∑
k=1

rk
s− sk

, (7)

where N is the filter order, sk are the filter poles, and rk are con-
stants that depend on the filter zeros. If the filter poles are simple,

the corresponding impulse response is given by

hc(t) =


N∑

k=1

rke
skt, for t ≥ 0

0, otherwise.

(8)

The decomposition of the Laplace transform Ĥ(s) of the BLEP
basis function is easily derived from that of the BLIT basis function
as

Ĥ(s) =
1

s
H(s) =

H(0)

s
+

N∑
k=1

rk/sk
s− sk

(9)

with the same sk and rk as above. Note that typically H(0) = 1.
Then, it follows for the step response

ĥc(t) =

1 +

N∑
k=1

rk
sk
eskt, for t ≥ 0

0, otherwise.

(10)

When (8) is sampled at time instants t = nT , where T is the
sampling interval in seconds and n ∈ Z, the time-invariant impulse
invariance transformation is obtained. In the time-varying case, the
sampling occurs at instants t = (n+ d)T , where d ∈ [0, 1) is the
offset (the fractional delay) from the beginning of the response (the
time instant of the discontinuity) to the sampling instant following it
(see [12] for more information about the offset computation). This
time-shifted sampling results in a discrete-time impulse response
expressed as

h(n, d) ≡ hc((n+ d)T ) =


N∑

k=1

rke
sk(n+d)T , for n ∈ N0,

0, otherwise,

=


N∑

k=1

rke
skdT esknT , for n ∈ N0,

0, otherwise,

=


N∑

k=1

rkz
d
kz

n
k , for n ∈ N0,

0, otherwise,

(11)

where the last expression was obtained with a substitution zk =
eskT . Applying the z-transform to (11) gives the discrete-time
filter

H(z, d) =

N∑
k=1

rkz
d
k

1− zkz−1
(12)

for the BLIT case, and, by similar means,

Ĥ(z, d) =
1

1− z−1
+

N∑
k=1

rk
sk
zdk

1− zkz−1
(13)

for the BLEP case. Note that the additional 1/(1 − z−1) term
represents a discrete step function.

Since the application area discussed here comprises real-valued
systems and signals, (12) can be reformulated by combining the
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sections that correspond to complex conjugate rk and zk, yielding

HRe(z, d) =

N2∑
k=1

2Re{rk,2zdk,2} − 2Re{rk,2zd−1
k,2 }|zk,2|

2z−1

1− 2Re{zk,2}z−1 + |zk,2|2z−2

+

N1∑
k=1

rk,1z
d
k,1

1− zk,1z−1
, (14)

where rk,1 and zk,1 are the N1 real-valued numerator coefficients
and poles, respectively, and rk,2 and zk,2 are a coefficient and pole
pair of each N2 complex conjugate pairs.

It can be noted that the recursive parts of (14) do not depend
on d. Therefore, the time-shifted impulse response can be triggered
at time instant tp = (np − dp)T by exciting constituting filters

H̄k,1(z) =
1

1− zk,1z−1
, and (15)

H̄k,2(z) =
1

1− 2Re{zk,2}z−1 + |zk,2|2z−2
, (16)

with the respective input signals

uk,1(n, dp) =

{
rk,1z

dp
k,1, for n = np,

0, otherwise,
(17)

uk,2(n, dp) =


2Re{rk,2zdpk,2}, for n = np,

−2Re{rk,2zdp−1

k,2 }|zk,2|
2, for n = np + 1,

0, otherwise,
(18)

and by summing their outputs. A sequence of impulse responses
can be generated by superimposing input signals uk,1(n, dp) and
uk,2(n, dp) for different pulse trigger times tp, yielding the set
of driving signals uk,1(n) and uk,2(n). The block diagram of
this approach is depicted in Fig. 3. To obtain a BLEP generator
instead, we only need to divide the driving signals by the respective
constants sk,{1,2} and add a simple discrete step function to the
output with onset at np, indepent of dp.

Note that the driving signals uk,1(n) and uk,2(n) will be sparse
as the individual input signals contain only one or two nonzero
values per pulse. Nevertheless, direct evaluation of (17) and (18) is
unattractive as it requires computation of N1 real and N2 complex
exponentials. However, they can be efficiently approximated with
low-order polynomials, as shown in the following examples.

4.2. Design examples

To illustrate the approach described above, consider an analog
lowpass prototype that has been designed as a fifth-order elliptic
(Cauer) filter with a passband ripple of 1 dB, cutoff frequency at
75% of the Nyquist limit (corresponding to about 16.5 kHz for fs =
44.1 kHz) and a stopband attenuation of 81 dB. The coefficients of
the filter

H(s) =

5∑
m=0

bms
m

5∑
m=0

ams
m

(19)

are given in Table 1.

u1,1(n) H̄1,1(z)

...
...

uN1,1(n) H̄N1,1(z)

u1,2(n) H̄1,2(z)

...
...

uN2,2(n) H̄N2,2(z)

+
Basis
function
train

Figure 3: Block diagram of the basis function train generator.

Table 1: Coefficients of the fifth-order elliptic prototype analog
lowpass filter.

m am bm

5 1.0000 0.00000
4 2.2012 0.00256
3 9.5082 0.00000
2 13.0517 0.35220
1 18.8744 0.00000
0 9.8924 9.89239

With the transformation method described above, the coeffi-
cients of the discrete-time system are given as{

z1,1 = 0.48986,

r1,1 = 0.78264,
(20){

z1,2 = −0.57101 + 0.59345j,

r1,2 = 0.15963 + 0.12702j,
(21){

z2,2 = 0.04685 + 0.57524j,

r2,2 = −0.54967− 0.20284j,
(22)

that is, the system is composed of one first-order subsystem,

H̄1,1(z) =
1

1− 0.48986z−1
, (23)

and of two second-order subsystems,

H̄1,2(z) =
1

1 + 1.14202z−1 + 0.67824z−2
, and (24)

H̄2,2(z) =
1

1− 0.09369z−1 + 0.33309z−2
. (25)

When these systems are driven by the exact excitation signals
as given by (17) and (18), the results depicted in Fig. 4 are ob-
tained. As can be seen in Fig. 4(a), the amplitudes of the aliased
components (as well as the wanted harmonics) of the impulse train
directly depend on the amplitude response of the prototype lowpass,
and that the “floor” level of the aliasing distortion approximately
matches the stopband attenuation of the prototype lowpass filter.

To obtain the rectangular pulse wave, two appropriately time-
shifted excitation signals with opposite sign were superimposed
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Figure 4: (a) Spectrum of the basis function train and (b) the spec-
trum of the rectangular pulse wave generated with the time-varying
technique. The analog prototype filter is a fifth-order elliptic filter
that has a cutoff frequency at 75% of the Nyquist limit, passband
ripple of 1 dB, and stopband attenuation of 81 dB. As before, f0 =
3 kHz and fs = 44.1 kHz. Exact excitation signals are used. The
dotted line in (a) represents the aliased magnitude response of the
prototype filter. The rectangular pulse was synthesized using the
BLEP generator algorithm.

and fed into the BLEP generator. As shown in Fig. 4(b), the addi-
tional roll-off of the integrated analog lowpass filter further helps
in suppressing aliasing.

By examining the dependency between the offset d and the
excitation signals (17) and (18), it is observed that these functions
are typically relatively smooth. For instance, the exact excitation
signals for the filter coefficients of (20)–(22), plotted in Fig. 5, can
be approximated well with third-order polynomials

uk,1(n, dp) ≈


3∑

l=0

ck,1,ld
l
p, for n = np,

0, otherwise,

(26)

uk,2(n, dp) ≈



3∑
l=0

ck,2,0,ld
l
p, for n = np,

3∑
l=0

ck,2,1,ld
l
p, for n = np + 1,

0, otherwise,

(27)

for k = 1, 2. Performing a least-squares fit of the exact signals, the
coefficients listed in Table 2 are obtained. These polynomials yield
good results, as can be seen in the resulting spectra plotted in Fig. 6.
The desired harmonics and the most prominent aliased components
are nearly unaffected by this approximation. The major difference
lies in an increase of the higher-order aliasing distortion at high
frequencies.

Obviously, by choosing the filter order and the order of the poly-
nomial approximation appropriately, one obtains different trade-offs
between accuracy and computational complexity. This is illustrated
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Figure 5: Exact excitation signal values as a function of the offset
dp: (a) u1,1(np, dp), (b) u1,2(np, dp) (solid line) and u1,2(np +
1, dp) (dashed line), and (c) u2,2(np, dp) (solid line) and u2,2(np+
1, dp) (dashed line).

Table 2: Coefficients for the third-order polynomial approximation
of the exact excitation signal values.

l c1,1,l c1,2,0,l c1,2,1,l c2,2,0,l c2,2,1,l

3 −0.0334 0.6444 0.1564 −0.4882 0.2008
2 0.1909 −0.5921 0.4788 0.5123 −0.9012
1 −0.5567 −0.7035 −0.8831 1.2570 0.7820
0 0.7826 0.3219 0.0362 −1.1017 0.2837

by Figs. 7 and 8. In Fig. 7, a seventh-order elliptic filter, which
has the same design parameters as the previous example, was com-
bined with fifth-order polynomial approximation to obtain results
with very low distortion. In contrast, Fig. 8 shows the spectra of
a case where a third-order Butterworth filter, which has its cutoff
frequency at 75 % of the Nyquist frequency, was combined with
first-order polynomial (i.e. linear) approximation of the excitation
signals. As expected, the aliasing distortion is increased but the re-
sult might still be good enough in applications where computational
efficiency is a main priority.

5. CONCLUSIONS AND FURTHER WORK

In virtual analog synthesis, special attention needs to be given to the
generation of bandlimited source signals. An efficient methodology
for the synthesis of bandlimited waveforms typically used in virtual
analog synthesis is based on expressing the waveform or its time-
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Figure 6: (a) Spectrum of the basis function train and (b) the spec-
trum of the rectangular pulse wave generated with the time-varying
technique using the fifth-order elliptic prototype filter and third-
order polynomial approximations of the exact excitation signals.

derivative as a sequence of bandlimited impulse or step functions.
By doing so, the algorithms of this group effectively reduce the
aliasing distortion present in the waveforms. Because the ideal
bandlimited functions, i.e. the ideal basis functions of these quasi-
bandlimited oscillator algorithms, are infinitely long, alternative
basis functions that are implementable have been suggested.

So far, the basis functions proposed for the task have been
linear-phase functions apart from a couple of special cases. In
this paper, a general technique for deriving nonlinear-phase ba-
sis function generators was discussed. The proposed algorithm is
based on transforming the impulse or step response of an analog
filter to a digital filter using a modified impulse invariance trans-
formation method. The modified transformation enables arbitrary
(sub-sample) offsets to be done to the filter’s response, thus fulfill-
ing the need of shiftable basis functions in the quasi-bandlimited
oscillator algorithms.

The resulting digital filter obtained with the proposed technique
is essentially a set of parallel first- and/or second-order IIR filters
that are excited with short burst-like signals. The excitation signals
that have one or two nonzero values depend on the needed sub-
sample offset. The exact expressions of the excitation signals have
complex exponentials, but it was shown that they can efficiently be
approximated with low-order polynomials. The choice of filter and
polynomial order thus allows a flexible trade-off between aliasing
reduction and computational complexity.

The nonlinearity of the phase response was assumed to yield
inaudible effects in the description of the discussed technique. How-
ever, while this may be the case in general, further analysis of the
effects of the nonlinearity of the phase response should be still
performed. Furthermore, the proposed method was exemplified
with various design cases. In order to have practical choices for the
analog prototype filter, design rules should be derived using the lat-
est knowledge of the audibility of aliasing. Moreover, the proposed
technique should be compared with the existing approximations in
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Figure 7: (a) Spectrum of the basis function train and (b) the spec-
trum of the rectangular pulse wave generated with the time-varying
technique when the prototype filter is a seventh-order elliptic filter
and the excitation signals are approximated with fifth-order poly-
nomials. Again, f0 = 3 kHz, fs = 44.1 kHz, the crosses indicate
the non-aliased components, and the rectangular pulse wave is
synthesized with the BLEP generator.
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Figure 8: (a) Spectrum of the basis function train and (b) the spec-
trum of the rectangular pulse wave generated with the time-varying
technique when the prototype filter is a third-order Butterworth
filter and the excitation signals are approximated with first-order
(linear) polynomials. Again, f0 = 3 kHz, fs = 44.1 kHz, the
crosses indicate the non-aliased components, and the rectangular
pulse wave is synthesized with the BLEP generator.
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terms of aliasing reduction and computational complexity.
Sound and code examples of the presented approach can be

found online at the paper’s companion page http://pekonen.
cc/p/dafx12-nlpo/.
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