
Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

SIMULATION OF FENDER TYPE GUITAR PREAMP USING APPROXIMATION AND
STATE-SPACE MODEL

Jaromir Macak, Jiri Schimmel

Department of Telecommunications
Brno University of Technology

Brno, Czech Republic
jaromir.macak@phd.feec.vutbr.cz

schimmel@feec.vutbr.cz

Martin Holters

Department of Signal Processing and Communications
Helmut Schmidt University

Hamburg, Germany
martin.holters@hsu-hh.de

ABSTRACT

This paper deals with usage of approximations for simulation of
more complex audio circuits. A Fender type guitar preamp was
chosen as a case study. This circuit contains two tubes and thus
four nonlinear functions as well as it is a parametric circuit because
of an integrated tone stack. A state-space approach was used for
simulation and further, precomputed solution is approximated using
nonuniform cubic splines.

1. INTRODUCTION

Despite the significant progress in research of analog audio circuit
simulations, this topic has not been closed yet. Many papers have
been published recently and they mainly focus on two approaches
of simulation – nonlinear wave digital filters [1, 2] and the state-
space approach which is represented by the DK-method [2, 3].
Comparing nonlinear wave digital filters to the DK-method, the
DK-method offers a more circuit-oriented approach and is also
suitable for circuits with more nonlinear components, while wave
digital filters require transformation of Kirchhoff variables into
wave variables and also embedding of more nonlinear functions is
more difficult and often is solved using delayed nonlinear functions
[4]. Both approaches require usage of precomputed look-up tables
to be able to work in real-time efficiently as was mentioned in
[5, 3, 6] but unfortunately, there are not many details about look-
up tables and used interpolations, except for the paper [6] where
bilinear interpolations with grids of 100× 100 and 25× 25 points
have been used.

Furthermore, all the simulated audio circuits mostly consisted
of one nonlinear component and therefore, the maximum dimension
of the look-up table was two (a triode model consists of a nonlinear
function of two input variables). However, the circuits are often
more complicated although division into simpler blocks is used.
One must take care about mutual interaction between connected
blocks as can be seen in [7, 8] and in case of a tube circuit, one
block of the circuit must contain two tubes.

The first successful attempt to simulate more complicated cir-
cuit was in [9] where a wah-effect with two transistors was modeled.
However, this audio effect operates in the linear part of the transistor
transfer function and therefore, although the model was nonlinear,
one can solve the nonlinear equations in real-time using a fixed
point iteration numerical algorithm. But this is not true for simula-
tion of guitar distortion effect pedals or guitar tube preamps.

Therefore, this paper focuses on real-time simulation of a guitar
Fender type tube preamp which consists of two triodes and an

integrated tone stack. Firstly, an efficient implementation of cubic
spline interpolation will be described. To reduce the amount of data
required for the simulation, a nonuniform grid interpolation will
be used. In order to get nonuniformly gridded data, an algorithm
based on removing of the least important data points is designed.
In the second part of the paper, the Fender type preamp circuit is
introduced and a state-space model of the preamp is made with
respect to efficient handling of circuit parameter changes which
was introduced in [9]. Subsequently, a precomputation and an
approximation of the state-space model is performed.

2. EFFICIENT APPROXIMATION OF PRECOMPUTED
SOLUTION

Approximations often offer an efficient way of implementation of
complex functions but the main drawback is necessity of data to
be approximated or interpolated. Generally, this is not so serious
problem when using modern computers. However, a smooth in-
terpolation of nonlinear functions, especially in more dimensions,
often leads to large amounts of data, which can be unpractical for
implementation. Therefore, a trade-off between speed, memory
demands and quality of approximation of a function must be made.

One can make use of techniques known from digital image
signal processing but not all of them are suitable for audio signal
processing (e.g. nearest neighbor). One of the most often used
methods in audio signal processing is the linear interpolation. It
offers very fast implementation even in more dimensions but it
requires a lot of data to be interpolated and the main problem is non-
smooth behaviour. Moreover, when it is used for approximation of
a transfer function, it has similar properties as a piece-wise linear
transfer function [10] which has unlimited spectrum bandwidth.

Smooth behaviour is provided by cubic interpolation. How-
ever, the computational complexity is much higher than with linear
interpolation. Much better performance can be achieved by using
cubic spline interpolation which has similar properties as cubic
interpolation (smooth derivative up to second order). Furthermore,
one can use a nonuniform grid of data to be interpolated, which can
significantly reduce the amount of data.

2.1. Cubic Spline Interpolation with Constant Access

The cubic spline interpolation can be found in two forms – piece-
wise cubic spline and B-spline. Since we are looking for interpola-
tion which goes through the data points, we will further consider
only the piece-wise natural cubic spline interpolation that is given

DAFX-1

http://spl.utko.feec.vutbr.cz/
mailto:jaromir.macak@phd.feec.vutbr.cz
mailto:schimmel@feec.vutbr.cz
http://dafx11.ircam.fr
mailto:martin.holters@hsu-hh.de

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

by
y = aix

3 + bix
2 + cix+ di (1)

where ai, bi, ci and di are spline coefficients and i denotes the
interval used. Spline coefficients are derived from the boundary
point values of the intervals in such a way that the first and second
derivatives at the boundary points of the intervals are continuous.
From these conditions, it is possible to obtain a set of equations
whose solution leads to computation of the spline coefficients. How-
ever, this technique is described in various literature e.g. [11] and
therefore it is not further addressed here.

When using splines in piece-wise form, the critical part of
computation is determination of the interval from which the spline
coefficients have to be used. The most efficient way is determination
of the interval directly from the input value – it means assigning
an arbitrary independent variable x to an integer interval i. First
of all, consider a uniform grid spline with a step denoted by ∆.
The step ∆ must be sufficiently small to capture the shape of the
function. The very small ∆ can be also used for approximation
of discontinuous function which is transfered into a very steep
continuous function. The variable x can be a possibly negative
fractional number while the interval imust be a nonnegative integer.
Therefore, we introduce a mapping function

i = bmxc+ o (2)

where m denotes a multiplier constant and o an interval offset and
bc is floor function. Values of m and o will depend on spline break
points in such a way that if x is a break point of a spline, then the
term mx will be an integer number. The multiplier constant can be
found as m = 1

∆
. The vector xbreaks which will hold spline knot

values and will be further used for precomputation of a nonlinear
function is constructed according to

xbreaks = n∆ (3)

where

n = {Nmin, Nmin + 1, . . . ,−1, 0, 1, . . . , Nmax − 1, Nmax}
(4)

where Nmin =
⌊
xmin

∆

⌋
, Nmax =

⌊
xmax

∆

⌋
+ 1 and the offset

o = −Nmin.
When the vector xbreaks is known, the precomputation of a non-

linear function for xbreaks values proceeds. After the precomputa-
tion of the nonlinear function, the spline coefficients are determined.
The processing using the uniform grid is the following:

1. interval computation i = bmxc+ o,

2. fractional part computation xp = x− xbreaks[i],

3. and finally interpolation y = ((aixp + bi)xp + ci)xp + di
using Horner scheme which is more efficient than (1).

The interpolation in more dimensions is available using tensor
product. In case of 2-D splines, the interpolation is in the form of

f(x, y) =

3∑
i=0

3∑
j=0

ci,jx
iyj , (5)

where ci,j are spline coefficients. Totally, 16 spline coefficients are
required for one function evaluation. The computational scheme of
the nonuniform 2-D spline is:

1. i = bmxxc+ ox,

2. j = bmyyc+ oy,

3. xpart = x− xbreaks[i],

4. ypart = y − ybreaks[j],

5. a = ((c1,i,jyp + c2,i,j)yp + c3,i,j)yp + c4,i,j ,

6. b = ((c5,i,jyp + c6,i,j)yp + c7,i,j)yp + c8,i,j ,

7. c = ((c9,i,jyp + c10,i,j)yp + c11,i,j)yp + c12,i,j ,

8. d = ((c13,i,jyp + c14,i,j)yp + c15,i,j)yp + c16,i,j ,

9. f = ((axp + b)xp + c)xp + d.

The computational complexity of the 2D spline routine is five
times higher because it requires computation of five 1D spline
functions. However, it is possible to use parallel processing using
SIMD instructions. In that case, the splines in rows from 5 to 8
are computed as one spline function if single precision floating
numbers are used and then the computational complexity is only
two times higher than for 1D spline. However, to allow parallel
computation, the spline coefficients have to be properly ordered
and aligned in memory.

Similarly, the 3D spline is given by

f(x, y) =

3∑
i=0

3∑
j=0

3∑
k=0

ci,j,kx
iyjzk (6)

and its computation requires 64 coefficients per one value and 21
of 1D spline computations, which can be reduced to 6 if parallel
processing is used. However, it is obvious that the computational
complexity and foremost number of coefficients start increasing
rapidly. Therefore, an effective way of reducing data has to be
found.

2.2. Nonuniform Spline Interpolation with Constant Access

When using nonuniform grid interpolation, some points from the
abscissa vector xbreaks are removed and new spline coefficients
are computed. However, in this case, the interval computation is
more complicated because if (2) is used, the interval indeces are not
consistent with the new ones anymore. Nevertheless, this can be
solved by introduction of a simple interval mapping function given
by a vector fmapping which will translate the interval indexes from
the uniform grid to the nonuniform in a such way that several origi-
nal indexes will belong to one new index. The new computational
scheme for 1D spline is

1. j = bmxc+ o,

2. i = fmapping[j],

3. xpart = x− xbreaks[i],

4. y = ((aixpart + bi)xpart + ci)xpart + di

and can be similarly extended to more dimensions. This modifi-
cation enables reduction of the look-up table while there is only
one extra assignment i = fmapping[j]. The drawback is that extra
memory for mapping data is required, but mapping functions are
one dimensional even for more dimensional spline interpolations.

2.3. Reduction of Spline Coefficients

The efficient nonuniform gridded spline interpolation was shown
in the previous section. However, the precomputed solution has a
uniform grid. Therefore, an algorithm that removes unimportant
data points from the regular grid is designed. There is a constraint
given by the constant access that the data must remain on a regular

DAFX-2

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

grid and cannot be scattered. While some data points are being
removed from the input vector in case of 1D splines, whole rows
or columns must be removed from the input matrix in case of 2D
splines and similarly in higher dimensions. The algorithm goes
through all data points except the boundary points. Each point is
removed and a spline function is constructed from the reduced data.
Then a data point with the smallest error between the reduced spline
interpolation and full data interpolation is removed. After that, the
next iterations on the reduced data are performed until the error
is equal to the given error. Finally, a mapping function between
the uniform and nonuniform grid in each dimension must be deter-
mined. The algorithm for reduction of data in more dimensions is
shown in listing 1.

Algorithm 1 dataReduction(x,f,maxerr)
1: [Dimensions, N] = size(x)
2: xn = x
3: fn = f
4: while (err < maxerr) do
5: for d = 1 to Dimensions do
6: for i = 2 to N [d] - 2 do
7: xr = xn
8: fr = fn
9: remove xr[i,d] from xr

10: remove fr[i,d] from fr
11: coef = buildspline(xr , fr)
12: err[i,d] = f - inpterpolate(coef ,x)
13: end for
14: end for
15: [index, dim] = position of min(err)
16: remove xn[index,dim] from xn
17: remove fn[index,dim] from fn
18: end while

19: return xn, fn

3. APPROXIMATION OF STATE-SPACE
NONLINEARITY

The nonlinear state-space system that will be used for modelling
has the form [3]

x(n+ 1) = Ax(n) + Bu(n) + Ci(n) (7)
y(n) = Dx(n) + Eu(n) + Fi(n) (8)
v(n) = Gx(n) + Hu(n) + Ki(n) (9)

where x(n) holds the states, u(n) is the input vector, y(n) is
the output, the currents through the nonlinear circuit elements are
collected in i(n) and the respective voltages in v(n).

In addition to the linear relationship of (9), the voltages and
currents of the triodes are related by the current-voltage law

i(n) = f
(
v(n)

)
(10)

of the nonlinear elements. The simulation thus proceeds by per-
forming for each sample the following steps:

1. Calculate p(n) = Gx(n) + Hu(n).

2. Solve v(n) = p(n) + Ki(n) together with (10) to deter-
mine i(n) for the current values of p(n) and K.

3. Compute the output with (8).

4. Update the states with (7).

The core of the state-space nonlinearity is given by the implicit
formulation

v(n) = Ki(n) + p(n) = Kf
(
v(n)

)
+ p(n). (11)

Considering a precomputation of such a system, the maximal di-
mension of the precomputed solution will be given by the number
of inputs p, however some input parameters p can be constant for
some circuit topologies and therefore the dimension can be lower
than the maximum and is equal to the number of non-constant in-
puts. For parametric circuits, one has to also consider that the K
coefficient matrix is dependent on parameter values and then the
dimension of the precomputed solution must be extended by num-
ber of variable K coefficients, which leads to maximal dimension
given by N2 +N where N is the number of nonlinear functions.
The solution can also be precomputed with a parameter value as
an input variable to the system – this is more efficient when the
number of parameters is lower than the number of K coefficients
that are being changed by these parameters. As a result in both
cases, interpolation functions of high dimensions must be used and
as was stated in chapter 2.1, it would require a lot of data and also
computational power even if the nonuniform grid is used. However,
the requirement for smoothness of the interpolation function can
be related only to the inputs p because they ensure the smoothness
of the transfer function of the nonlinear system. An additional
linear interpolation of the solution for variable K coefficients or
values of parameters can be used because it will always produce
a smooth transfer function and furthermore, the parameter values
are never given very precisely, especially in case of analog circuits
with potentiometers.

4. FENDER PREAMP SIMULATION

A Fender type tube guitar preamp is often used as a standard for
clean and mildly overdriven guitar sounds, not just for Fender guitar
amplifiers but also by other guitar amplifier manufacturers. The
topology consists of two triodes and a tone stack that is connected
between the triodes. The circuit schematic is shown in Figure 1.

4.1. Derivation of the state-space model

We follow the description of [9] to derive a state-space model of the
circuit which allows for relatively easy handling of the potentiome-
ters. The first step is to construct the incidence matrices which
specify the connections of the circuit elements to the nodes. Divid-
ing by type of element, we get NR for the constant resistors, Nv

for the variable resistors, Nx for the capacitors, Nu for the voltage
sources (vin and VPS), Nn for the triodes, and No for the output vout.
These are sparse matrices with one row per respective element and
one column per node in the schematic except for the reference node
(ground). Each element is assigned a polarity and for element i
having its positive terminal at node j+ and its negative terminal at
node j−, the entry at (i, j+) of the respective incidence matrix is
set to 1, the entry at (i, j−) is set to−1, where terminals connected
to ground are ignored.

Each triode occupies two rows in Nn, representing the model
with two voltage-controled current sources shown in Figure 2. Note
that for consistency with [9], corresponding voltages and currents
have opposite direction, yielding the somewhat unususal definition

DAFX-3

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

1

Ri,a

2

Ri,b

vin

3

R17C6

4

R16

VPS

R18

6

C7

C8

C9

R19

7

8

5

R20

R21

9

R22

C10

S4

10
11

R24C11

R23

VPS

12

vout

C6 22 µF
C7 250 pF
C8 100 nF
C9 22 nF
C10 120 pF
C11 22 µF
Ri,a 34 kΩ
Ri,b 1 MΩ
R16 100 kΩ
R17 1500 Ω
R18 100 kΩ
R19 250 kΩ
R20 250 kΩ
R21 10 kΩ
R22 1 MΩ
R23 100 kΩ
R24 1640 Ω

Figure 1: Schematic of the modelled Fender type preamp.

of grid and plate current to point out at the respective terminals.
This results in the incidence matrix

Nn =

0 1 −1 0 · · · 0 0 0 0
0 0 −1 1 · · · 0 0 0 0
0 0 0 0 · · · 1 −1 0 0
0 0 0 0 · · · 0 −1 1 0

where the all-zero columns 5–9 have been omitted. As the construc-
tion of the remaining incidence matrices is straight-forward, we
shall not reproduce them here.

There are, however, two particularities which require a slight
deviation from [9]. The first is the switch S4, which changes the
topology and even the effective order of the circuit, as C10 will
not have any effect if S4 is open. We handle this by deriving two
models, one for S4 closed, one for S4 open. The latter model con-
tains a 14th node to which only C10 is connected. The advantage
compared to omitting the ineffective C10 is that the derived coeffi-
cient matrices will have the same dimensions with only somewhat
different values. In paticular, the state update for S4 open will leave
the state variable corresponding to C10 unchanged. This allows for
proper simulation of the switching behaviour.

ip

ig

vgk

vpk=

Figure 2: Model of the triode as two voltage-controlled current
sources.

The second specialty arises from the way [9] handles variable
parts. Namely, it first considers the circuit with all variable parts
removed and assumes the modified nodal analysis’ system matrix

S0 =

(
NT

R GRNR + NT
x GxNx NT

u
Nu 0

)
(12)

9

10

(1− λ)R22

λR22

9

10

2(1−λ)
2−(1−λ)

R22 2R22

2λ
2−λR22 2R22

=

Figure 3: Substitution of potentiometer R22 to avoid floating
nodes 9 and 10.

to be invertible, where GR and Gx are diagonal matrices with the
elements 1

Ri
and 2Ci

T
, respectively, and T denotes the sampling

interval. But the matrix S0 will be singular if there is any node not
connected to the reference node with a chain of constant resistors
and capacitors only. This, however is the case for nodes 9 and 10.
To overcome this issue, we replace R22 as depicted in Figure 3,
introducing virtual constant resistors of value 2R22 in parallel to
the two sub-resistors of the potentiometer R22. These sub-resistors
in turn are changed from λR22 and (1 − λ)R22 to 2λ

2−λR22 and
2(1−λ)

2−(1−λ)
R22, respectively, where λ ∈ [0, 1] denotes the setting of

the potentiometer, in order to yield the correct overall resistence.
After augmenting NR and GR with the two extra resistors, we
obtain an invertible S0.

With this modified S0, we derive the constant coefficient ma-
trices A0 ∈ R6×6, B0 ∈ R6×2, C0 ∈ R6×4, D0 ∈ R1×6,
E0 ∈ R1×2, F0 ∈ R1×4, G0 ∈ R4×6, H0 ∈ R4×2, K0 ∈ R4×4

byA0 + I B0 C0

D0 E0 F0

G0 H0 K0

 =

2GxNx 0
No 0
Nn 0

S−1
0

Nx 0
0 I
Nn 0

T

(13)
where 0 and I are zero and identity matrices with dimensions as
required by context. By further precalculating the constant helper

DAFX-4

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

Table 1: Parameters of the triode model used.

t Gt Ct ξt µ

g 6.06× 10−4 13.9 1.354 —
k 2.14× 10−3 3.04 1.303 100.8

matrices
Q
Ux

Uo

Un

Uu

 =

Nv 0
Nx 0
No 0
Nn 0
0 I

S−1
0

(
NT

v
0

)
(14)

we can then compute the final coefficient matrices byA B C
D E F
G H K

 =

A0 B0 C0

D0 E0 F0

G0 H0 K0

−

2GxUx

Uo

Un

 (Rv + Q)−1

Ux

Uu

Un

T

(15)

where Rv is diagonal matrix with elements Ri for all variable
resistors, i.e. θR19 and (1 − θ)R19 for the treble control, βR20

for the bass control, µR21 for the middle control, and 2λ
2−λR22 and

2(1−λ)
2−(1−λ)

R22 for the level control as described above, where θ, β,
µ, and λ denote the potentiometer settings.

For the nonlinear current-voltage law (10), we apply the triode
model proposed in [12], given by

ig = −Gg ·
(

log
(
1 + exp(Cgvg)

)
· 1

Cg

)ξg

ip = −Gk ·
(

log
(

1 + exp
(
Ck(

vp
µ

+ vg)
))
· 1

Ck

)ξk

− ig

for the polarity defined above with the parameters of Table 1.
The values of K depend on the potentiometer settings and the

position of the switch S4. Closer examination reveals that only
the elements k22, k23, k32, and k33 change while the remaining
twelve values remain fixed. This can be seen from the fact that all
variable circuit elements are in the part connecting the plate of the
first triode with the grid of the second triode, corresponding to the
second and third elements of v and i, and are not connected to the
other triode terminals. By further observing that K is symmetric
and hence k23 = k32, the five variable parts affect only the three
independent entries k22, k23, and k33 of the matrix K.

4.2. Precomputation

As can be seen from (11) and the dimension of matrix K, the
nonlinear equation has 4 independent inputs for which it has to
be precomputed. First of all, it is necessary to find ranges for
input variables p1, p2, p3 and p4. This can be done using p(n) =
Gx(n) + Hu(n) and it will depend on input signal values and
circuit state values as well. The range of input values can be easily
derived from input signal properties and also from power supply
value VPS, obtaining the range of state variables is much more
complicated. The values of state variable will belong to interval
[0, VPS] but mostly, the range will be much narrower. However, the

ranges can be also estimated from performed simulations without
an approximation. The ranges of input variables p1, p2, p3 and p4

used for this simulation are in Table 2. Similarly, the ranges for
K matrix coefficients can be obtained from (15) for variable Rv

dependent on parameter values θ, β, µ, and λ. In this case, the
derivation of parameter ranges is much easier, the range is [0, 1]
for all parameters and the range of K matrix coefficients is given
by minimal and maximal value for all combinations of discretized
parameter values. The ranges of K coefficients are in Table 3.

Table 2: Ranges of p parameters.

p1 p2 p3 p4

min −4 200 −400 200
max 4 400 400 400
step 0.125 4 0.25 0.25

Table 3: Ranges of K coefficients.

k22 k23 k33

min 3.3× 104 0.0 0.4
max 4.6× 104 3.8× 104 1.3× 105

The process of precomputation itself is rather computationally
demanding. Since the multivariate nonlinear equation tends to
oscillate, one must use very small step between neighboring data
points to force the solution to converge and it costs a lot of time
and memory. However, the nonlinear equation (11) can be split in
this case into

vgk1 = k11ig(vgk1) + k12ip(vgk1, vpk1) + p1

vpk1 = k21ig(vgk1) + k22ip(vgk1, vpk1) + k23ig(vgk2) + p2︸ ︷︷ ︸
p2

(16)

and

vgk2 = p3 + k32ip(vgk1, vpk1)︸ ︷︷ ︸
p3

+ k33ig(vgk2) + k34ip(vgk2, vpk2)

vpk2 = k43ig(vgk2) + k44ip(vgk2, vpk2) + p4

(17)

where terms k23ig(vgk2) and k32ip(vgk1, vpk1) are mutual impacts
of the adjacent triodes. Equations (16) and (17) can be precomputed
separately for input variables p1, p2 and p3,p4 and further functions

fip1(p1, p2) = ip(vgk1(p1, p2), vpk1(p1, p2)) (18)

fig2(p3, p4) = ig(vgk1(p3, p4), vpk1(p3, p4)) (19)

can be introduced. Subsequently, the plate current ip1 can be
computed from

ip1 = fip1(p1, p2 + fig2(p3 + ip1, p4)) (20)

for p1, p2, p3 and p4 then

ig2 = fig2(p3 + ip1, p4) (21)

DAFX-5

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

and finally, all the remaining currents or voltages can be derived
from (16) and (17). Both approaches should give similar solutions
of (11) – it depends only on the quality of approximation of the
partial functions. As a result of the precomputation, there are
four 4D look-up tables for circuit currents or voltages for constant
parameters or 7D look-up tables for the parametric circuit. As was
mentioned earlier, the p1, p2, p3 and p4 part of the look-up tables
should be interpolated with smooth interpolation, while for the
parametric part linear interpolation is sufficient. The number of
data points can be reduced by algorithm (1). However, this was not
performed due to extremely high computational demands.

4.3. Further Look-up Table Size Reduction

The look-up tables designed in the previous chapter are sufficient
for working in real-time. Nevertheless, they are quite impractical
for implementation of the algorithm which would simulate the
circuit because the amount of data is still large. Therefore, a further
compression of data would be beneficial. By closer look at the
K matrix, one can observe some zero or low-value coefficients
compared to the other values. Consequently, a correlation analysis
of precomputed data was performed. Covariance matrices for input
variables and function values were in form (expressed only for one
row of input data)

C = cov
([
pi11 pi22 pi33 pi44 f(pi11 , p

i2
2 , p

i3
3 , p

i4
4)
])

(22)

where the superscripts denote indexes i1 ∈ [1, N1], i2 ∈ [1, N2],
i13 ∈ [1, N3] and i4 ∈ [1, N4] and function f(p1, p2, p3, p4) was
substituted with precomputed nonlinear current functions ig1(p),
ip1(p), ig2(p) and ip2(p). The resulting covariance between non-
linear functions and inputs p1, p2, p3 and p4 is stated in Table 4.

Table 4: Covariance between precomputed functions and inputs.

ig1(p) ip1(p) ig2(p) ip2(p)

p1 −5× 10−4 −7× 10−3 6× 10−4 9× 10−4

p2 1× 10−6 −1× 10−1 7× 10−3 1× 10−2

p3 −1× 10−8 1× 10−3 −1× 10−2 −3× 10−2

p4 5× 10−14 5× 10−9 5× 10−8 −9× 10−3

As can be seen from the table, some nonlinear functions are
almost independent of some input variables – functions ig1(p),
ip1(p), ig2(p) are independent of variable p4 and the function
ig1(p) is further almost independent of variable p3. Therefore,
the look-up table ig1(p) can have only 2 dimensions for constant
parameters and 5 dimensions for the parametric circuit, the look-up
tables ip1(p), ig2(p) are 3D for constant and 6D for parametric
circuit and the look-up table ip2(p) remains the same.

However, due to missing connections between nonlinear func-
tions, a further simplification and decomposition can be introduced
as was described in section 4.2 by equations (16) and (17). The
whole model is split into two independent parts, each containing
one tube. The grid and plate currents are computed from the ap-
proximated functions

ig1 = ig1app(p1, p2) (23)

ip1 = ip1app(p1, p2, p3) (24)
where the redundant inputs were neglected. Then, the mutual
interaction of both tubes is known and has been already included

in the plate current ip1. This current is subsequently used as an
additional contribution to the input p3 as can be seen in (17) and
the currents of the second tube are obtained from

ig2 = ig2app(p3 + k32ip1) (25)

ip2 = ig2app(p3 + k32ip1, p4). (26)

The big advantage of this decomposition is that it should not in-
troduce any error (the results can differ but it is rather caused by
numerical solving) if no p parameter is omitted. The last task is
to consider efficient approximation regarding variable K matrix
coefficients – k22, k23 = k32 and k33. The grid current ig1 is
independent on the second tube, therefore it should only depend
on coefficient k22, but in this case the current ig1 does not change
with value of k22. The plate current ip1 depends on all variable k
coefficients and the currents of the second tube depend only on co-
efficient k33 because other coefficients have already been included
in contribution of plate current to variable p3. Eventually, it was
found that using parameters θ, β, µ, and λ as inputs into look-up
table for current ip1 gives smaller look-up table size than using
coefficients k22,k23,k33 although the number of variable K coef-
ficients is smaller than the number of parameters. This is because
function ip1 changes dramatically with different k22,k23,k33 values
and thus coefficients k22,k23,k33 must be more densely sampled,
while with parameters θ, β, µ, λ and S4 switch as the inputs into
the look-up table, it seems to be sufficient to use only boundary
values. Furthermore, the current ip1 is almost independent on bass
parameter β – this is due to parallel combination of resistors R18

and R22 with serial combination R20β and R19.
The final equations are

ig1 = ig1app(p1, p2) (27)

ip1 = ip1app(p1, p2, p3, θ, µ, λ, S4) (28)

ig2 = ig2app(p3 + k32ip1, k33) (29)

ip2 = ig2app(p3 + k32ip1, p4, k33) (30)

and a detailed description of look-up tables is provided in Table 5
where the number of intervals per dimension per table is given. It
consists of spline interpolations for p parameters and linear interpo-
lations for circuit parameter changes. During the processing of the
input signal, it is not necessary to compute all the interpolations,
the parametric part can be interpolated only when the parameters
are changed and resulting interpolated spline coefficients are stored
in runtime memory of the algorithm. Then only the interpolation
based on p variables is performed for each signal sample. The size
of the runtime memory is shown in the third column of Table 5.
The memory size required for the look-up tables is mentioned it
Table 6. Comparing to original data size 53 GB per table (based on
Table 2 and boundary values for θ, β, µ, and λ), a great reduction
of data has been achieved. However, it is not sufficient for some
applications, e.g. implementation on signal processors. In this case,
it is possible to perform the interpolation directly from data points
stored in look-up tables instead of spline coefficients. Then, the
look-up table size is reduced (see the columns local in Table 6)
but on the other hand, the runtime computation of whole splines
will significantly increase the overall computational complexity. In
such a case, it is better to use a local interpolation working on a
nonuniform grid only from neighboring data points. However, these
interpolations will be slower than the proposed spline interpolation
– e.g. the cubic hermite interpolation between stored data points is
approximately 3 times slower than the cubic spline interpolation.

DAFX-6

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

Table 5: Description of the look-up tables – number of intervals

table spline lin. interp runtime

ig1app 13× 6 - 13× 6
ip1app 46× 14× 29 2× 2× 2× 2 46× 14× 29
ig2app 15× 6× 13 - 15× 6
ip2app 38× 8× 12 - 38× 8

Table 6: Data size of the look-up tables.

table global interp. [kB] local interp. [kB]

total runtime total runtime

ig1app 3.75 3.75 0.30 0.30
ip1app 65 520.00 4095.00 1167.26 72.95
ig2app 210.00 4.38 4.57 0.35
ip2app 712.25 16.20 14.25 1.19

5. RESULTS AND DISCUSSION

The algorithm for simulation of the preamp was written as a Matlab
mex function in C language. The algorithm consists of spline
interpolation up to third order for p variable interpolation and linear
interpolation for parameter variable interpolation. The parameter
interpolation is performed before the main processing loop. The
Templetate Numerical Toolkit1 was used for matrix operations. The
computational complexity of the algorithm was around 10 % on
a 2.66 GHz Intel processor but more than half of it was spent on
the matrix operations. The original state-space model without the
approximations consumes around 76 %. The algorithm was not
optimizied using the parallel processing because it would require to
write critical parts of the algorithm in assembly language or using
intrinsic functions. As a result of this, a further reduction of the
computational complexity is possible. The quality of approximation
is illustrated in Figures 4, 5, 6, and 7. The input signal was a
100 Hz sinewave signal with an amplitude of 0.5 V and a sampling
frequency of 48 kHz. The chosen error for the data reduction in
the algorithm (1) was 1 × 10−6 A. Figures 4 and 5 show output
signals in time and frequency domain for the numerical solution
and the approximated solution for parameter values θ = 1, β = 1,
µ = 1, λ = 1; that means without the interpolation of parameters.
The interpolation for parameter values θ = 0.5, β = 0.5, µ = 0.5,
λ = 0.5, which is the worst case, is shown in Figures 6 and
7. Although the difference of the numerical and approximated
solution is quite large in time domain, the harmonic content is very
similar. The sinewave signal mentioned earlier and a real guitar riff
were used as input signals. There was only a very subtle difference
for the sinewave signal and the version with parameters θ = 0.5,
β = 0.5, µ = 0.5, λ = 0.5. The results for the guitar signal
sounded similarly. Sound examples are available on the web page
www.utko.feec.vutbr.cz/~macak/DAFx12/.

The most difficult part of the approximation is choosing the
maximal error used during data reduction. Because the triode
current functions were approximated, the output signal error is
equal to the chosen error multiplied by the plate resistor value
multiplied with the amplification factor of the next triode. The
next error source are the constant p parameters. This error can be

1http://math.nist.gov/tnt/

however only evaluated by comparing of the output signals with
non-constant p parameters.

0 5 10 15 20 25
100

200

300

400

 t [ms]

 v
p2

 [V
]

0 5 10 15 20 25
−10

−5

0

5

 t [ms]

E
rr

 [V
]

Figure 4: Output signals (top, dashed line for numerical solution)
and difference between numerical and approximated solution in
time domain without parameter interpolation.

0 1000 2000 3000 4000 5000
−30

−20

−10

0

10

20

30

40

 f [Hz]

 M
 [d

B
]

Figure 5: Difference between numerical and approximated solution
in time frequency without parameter interpolation. The numerical
solution (dashed line) is shifted to the right.

0 5 10 15 20 25
100

200

300

400

 t [ms]

 v
p2

 [V
]

0 5 10 15 20 25
−2

0

2

 t [ms]

E
rr

 [V
]

Figure 6: Output signals (top, dashed line for numerical solution)
and difference between numerical and approximated solution in
time domain with parameter interpolation.

DAFX-7

www.utko.feec.vutbr.cz/~macak/DAFx12/

Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

0 1000 2000 3000 4000 5000
−30

−20

−10

0

10

20

30

40

 f [Hz]

 M
 [d

B
]

Figure 7: Difference between numerical and approximated solution
in time frequency with parameter interpolation. The numerical
solution (dashed line) is shifted to the right.

6. CONCLUSION

The usage of interpolations for real-time simulation of nonlinear
analog audio circuits was discussed in this paper. As a case study,
the Fender type guitar preamp was chosen as an example of a highly
nonlinear and parametric circuit. The preamp was modeled using
the state-space approach. Subsequently, a computationally efficient
way of the implementation was discussed. The proposed algorithm
makes use of the optimized piece-wise cubic spline interpolation
up to three dimensions as the core. The parametric part of the
nonlinear function is interpolated using linear interpolation.

Further reduction of look-up table sizes was achieved by de-
composition of the nonlinearity into two independent nonlinear
parts. The second nonlinear part can serve as an additional contri-
bution to the input of the first nonlinearity. After the computation,
the first nonlinearity is similarly used as the additional input to the
second nonlinearity. Using this approach, even more complicated
preamps with tubes connected in series can be simulated without
decomposition into separate blocks. This will be verified in future
work.

The algorithm provides quite low computational complexity
considering the complexity of the simulated circuit and even further
optimization is possible. The main drawback is the large amount of
data required by the algorithm although the data was significantly
reduced. Future work will be focused on the usage of efficient
interpolations computed directly from stored data points instead
of spline coefficients. A promising method seem to be Newton
polynomial or spline interpolation with coefficients computed only
from the neighborhood of the value to be interpolated. Future work
can also be done on improvement of the algorithm for reduction of
necessary data points. The criterial function used in this paper was
the maximal difference of the transfer functions. A more efficient
way would probably be the application of a criterial function based
on a model of human hearing.

The modeled preamp has not been compared to the original one
but the validity of using DK-method was proved in various literature
and the main object of this paper was an efficient implementation
of this method for a more complicated circuit. To compare the
model with the original circuit, the tube parameters should be
fitted to particular tubes used in the preamp, the circuit must be
supplemented by capacitors responsible for the Miller effect and
also by an appropriate load for the second tube. However, the
DK-method is capable to handle all these modifications only by

changing some matrices, while the nonlinear core remains the same.

7. ACKNOWLEDGMENTS

This research is part of the project reg. no CZ.1.07/2.3.00/20.0094
"Support for incorporating R&D teams in international cooperation
in the area of image and audio signal processing" and is co-financed
by the European Social Fund and the state budget of the Czech
Republic.

8. REFERENCES

[1] J. Pakarinen and M. Karjalainen, “Enhanced wave digital
triode model for real-time tube amplifier emulation,” IEEE
Trans. Audio, Speech & Language Processing, vol. 18, no. 4,
pp. 738–746, 2010.

[2] D. T. Yeh and J. O. Smith, “Simulating guitar distortion
circuits using wave digital and nonlinear state-space formu-
lations,” in Proc. Digital Audio Effects (DAFx-08), Espoo,
Finland, Sep. 1–4, 2008, pp. 19–26.

[3] D. T. Yeh, J. S. Abel, and J. O. Smith, “Automated physi-
cal modeling of nonlinear audio circuits for real-time audio
effects - Part I: Theoretical development,” IEEE Trans. Au-
dio, Speech, and Language Processing, vol. 18, no. 4, pp.
728–737, May 2010.

[4] R. C. D. de Paiva, J. Pakarinen, V. Välimäki, and M. Tikander,
“Real-time audio transformer emulation for virtual tube ampli-
fiers,” EURASIP Journal on Advances in Signal Processing,
vol. 2011, pp. 15, 2011.

[5] J. Pakarinen and M. Karjalainen, “Wave digital simulation of
a vacuum-tube amplifier,” in Proc. Intl. Conf. on Acoustics,
Speech, and Signal Proc., Toulouse, France, May 15–19,
2006, pp. 153–156.

[6] D. T. Yeh, “Automated physical modeling of nonlinear audio
circuits for real-time audio effects - Part II: BJT and vacuum
tube examples,” IEEE Trans. Audio, Speech, and Language
Processing, vol. 20, no. 4, pp. 1207–1216, may 2012.

[7] J. Macak and J. Schimmel, “Real-time guitar preamp simula-
tion using modified blockwise method and approximations,”
EURASIP Journal on Advances in Signal Processing, vol.
2011, pp. 11, 2011.

[8] J. Macak and J. Schimmel, “Real-time guitar tube amplifier
simulation using approximation of differential equations,” in
Proc. Digital Audio Effects (DAFx-10), Graz, Austria, Sep.
6–10, 2010.

[9] M. Holters and U. Zölzer, “Physical modelling of a wah-wah
effect pedal as a case study for application of the nodal dk
method to circuits with variable parts,” in Proc. Digital Audio
Effects (DAFx-11), Paris, France, Sept. 19–23„ 2011.

[10] J. Schimmel and J. Misurec, “Characteristics of broken-line
approximation and its use in distortion audio effects,” in Proc.
Digital Audio Effects (DAFx-10), Bordeaux, France, Sept.
10–15, 2007.

[11] C. De Boor, A Practical Guide to Splines, Springer, New
York, 1 edition, 2001.

[12] K. Dempwolf and U. Zölzer, “A physically-motivated triode
model for circuit simulations,” in Proc. Digital Audio Effects
(DAFx-11), Paris, France, Sept. 19–23, 2011.

DAFX-8

	1 Introduction
	2 Efficient Approximation of Precomputed Solution
	2.1 Cubic Spline Interpolation with Constant Access
	2.2 Nonuniform Spline Interpolation with Constant Access
	2.3 Reduction of Spline Coefficients

	3 Approximation of State-space Nonlinearity
	4 Fender Preamp Simulation
	4.1 Derivation of the state-space model
	4.2 Precomputation
	4.3 Further Look-up Table Size Reduction

	5 Results and Discussion
	6 Conclusion
	7 Acknowledgments
	8 References

