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Abstract—We investigate a low complexity Soft-Input
Soft-Output (SISO) Hamming Decoder. The Decoding is based
on error patterns which belong to the same syndrome. It is
shown that it is sufficient to investigate error patterns with one
and two errors to gain up to 1.35dB compared to hard decision
decoding. The proposed decoding algorithm has a linearly rising
complexity, O(Nc), with the code word length Nc. The further
consideration of error patterns with three errors which belong
to the determined syndrome gain further 0.2dB and improves
the quality of the soft-output due to the increased number of
comparisons with valid code words. However, this also increases
the complexity of the decoding process to O(N2

c ). We present
simulation results for soft decoding of Hamming codes up to a
code word length of 63 bit. Furthermore, we present results for
turbo decoding with the 63, 57-Hamming code as a component
code.

Index Terms—Syndrome based soft decoding, Hamming Code,
low complexity, soft-output, turbo decoding

I. INTRODUCTION

The decoding algorithms of Hamming-codes were investigated
in several papers. The exhaustive maximum likelihood decoding
of a (63, 57)-Hamming code would require the comparison
of 257 valid code words. Chase reduced the complexity by
checking a fixed number of the error patterns with a slight
performance degradation [1]. A further reduction of considered
error patterns was obtained in [2]. Based on this approach
we show that the group of error patterns can be reduced to
single and double errors to gain up to 1.35 dB compared to hard
decision decoding (HDD). In contrasts to the proposed decoding
technique there are Trellis-based decoding algorithms [3] [4]
which have a quadratic complexity O(N2

c ) for Hamming and
Reed-Muller codes. A further different approach was considered
in [5], which is based on systematic bit-flipping. In [6] MAP
decoding is performed based on Hadamard transforms, which
leads to a complexity of O(NcldNc).

One of the here proposed decoding algorithms can achieve
a linear complexity with a performance degradation of
0.2 dB compared to maximum likelihood decoding. For a
(63, 57)-Hamming code, only 32 valid code words have to be
compared in terms of their soft information which is equivalent
to a linear complexity O(Nc), with the code word length

Nc. In addition, the proposed soft-output decoding makes the
algorithm suitable for further applications like turbo decoding.

II. ENCODING AND TRANSMISSION

The encoding of the message bits a can be performed by a
modulo 2 vector matrix multiplication of a and the generator
matrix G

c ≡ a ·G (1)

The expression ”≡” is equivalent with

c =(a ·G) mod 2.

The generator matrix of systematic 7, 4-Hamming code is given
by

G =
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0 0 1 0
0 0 0 1︸ ︷︷ ︸

I

|
|
|
|

1 1 0
0 1 1
1 1 1
1 0 1


︸ ︷︷ ︸

P

. (2)

c is modulated, so that a logical zero is equivalent to a +1
and a logical one is equivalent to a −1, x ∈ {+1,−1}. The
modulated signal x is distorted by the additive white Gaussian
noise (AWGN) w and results in the receive signal y,

y = x+w. (3)

III. HARD DECISION DECODING

For hard decision decoding (HDD) it is required to derive
the bit sequence c̃ from the distorted signal y. The syndrome
z can be calculated as follows

z ≡ c̃ ·HT ≡ (c+ e) ·HT , (4)

where H is the parity check matrix and e is the error pattern
belonging to the syndrome. In this manner, every syndrome
leads to exactly one single error pattern and the decoding can
be performed based on a syndrome table. If the error pattern is
~0, the syndrome is also ~0 which means that the received code
word is a valid code word and no decoding is required. Error
patterns with 2 (duets) or 3 errors (triplets) which belong to
the same syndrome are not taken into account for the decoding
and the distorted code word c̃ is corrected to



ĉ ≡ c̃+ e. (5)

In fact, every double error is decoded to a valid but wrong
code word. This explains the poor performance of HDD for
Hamming codes, which are illustrated in Fig. 2, 3, 4 and 5 for
the different code word lengths.

IV. SYNDROME BASED SOFT DECISION DECODING

For the syndrome based soft decision decoding it is required
to calculate the log-likelihood ratios (LLR or L-values) from
the received signal y,

L (x|y) = ln
P (x = +1|y)
P (x = −1|y)

, (6)

which finally leads to

L (x|y) = ln
exp

(
−Eb

N0
(y − 1)

2
)

exp
(
−Eb

N0
(y + 1)

2
) =

4Eb

N0
y, (7)

assuming that a logical zero and one have the same probability
[7].

Let us assume that the syndrome of a distorted bit sequence
of a 7, 4-Hamming code is z = (0 0 1). The possible error
patterns are collected in matrix E with its elements ej,i

E =



0 0 0 0 0 0 1
1 0 1 0 0 0 0
0 1 0 0 0 1 0
0 0 0 1 1 0 0
1 1 0 0 1 0 0
1 0 0 1 0 1 0
0 1 1 1 0 0 0
0 0 1 0 1 1 0


, (8)

where the second to fourth row bears the duets and the fifth
to eighth row bears the triplets. The error patterns for all
syndromes are determined in advance and stored in a list. The
size of the list rises quadratically for double errors and cubically
for triple errors (see Tab. I). Every row of E is multiplied by
the absolute value of log-likelihood ratios of the received signal
L (x|y). Afterwards, the resulting row vector is added up. The
vector with the lowest sum of L-values suggests the error
pattern with the highest probability of a correct decoding. For
the 7, 4-Hamming code Ne1 +Ne2 = 4 error patterns have to
be multiplied by |L (x|y) | to cover single and double errors.
If it is required to take triplets into account, Ne3 = 4 more
error patterns have to be multiplied by |L (x|y) |.

In order to estimate the complexity, the number of duets
belonging to one syndrome is given by

Ne2 =
1

Nc

Nc!

(Nc − 2)! · 2!
=

Nc − 1

2
, (9)

with Nc being the length of the code word. The number of
triplets can be calculated similarly by

Ne3 =
1

Nc

(
Nc!

(Nc − 3)! · 3!
− Ne2

3

)
=

Nc − 1

2
· Nc − 3

3
.

(10)

Eq. 9 and 10 show that the complexity rises linearly for
the duets and quadratically for the triplets. Table I shows
the number of duets Ne2 and triplets Ne3 belonging to one
syndrome.

TABLE I
NUMBER OF DUETS Ne2 AND TRIPLETS Ne3 BELONGING TO ONE
SYNDROME, SIZE OF ERROR PATTERN LISTS FOR ALL SYNDROMES

Nc Ne2 List size Ne3 List size
7 3 28×7 4 56×7

15 7 120×15 28 540×15
31 15 496×31 140 4836×31
63 31 2016×63 620 41076×63

V. SOFT-OUTPUT DECODING

In general, soft-output decoding provides output values for
iterative or turbo decoding. In order to generate soft-outputs,
the following algorithm is proposed. The probability values of
a code word are given by

P (c̃j = cj |yj) =
exp (|L (xj |yj)|)

1 + exp (|L (xj |yj)|)
. (11)

In the next step, the probability values are multiplied column-
wise for the given error pattern of every row i.

Ṗi =
∏
j

{
P (c̃j = cj |yj) if ei,j = 0

1− P (c̃j = cj |yj) if ei,j = 1
(12)

Now Ṗi is normalized, so that the sum of the normalized
probabilities Pi over all rows i is equal to 1,

∑
i

Pi = 1. The

normalized probabilities Pi are given by

Pi =
Ṗi∑

i′
Ṗi′

. (13)

Pi can be interpreted as the probability of correct decoding for
the given error pattern of row i. In a last step, the probability
that xj = +1, for a given received code word y, is calculated
by the sum of Pi over all rows i, if ei,j = c̃j , where c̃j is
defined as the logical received bit sequence. ·̂ indicates the
estimation of the new probabilities after the soft decoding.

P̂ (xj = +1|y) =
∑
i

ei,j=c̃j

Pi (14)

Due to the normalization, so that
∑
i

Pi = 1, the probability of

P̂ (xj = −1|y) can be calculated by

P̂ (xj = −1|y) = 1− P̂ (xj = +1|y) . (15)

In order to exchange the information for turbo decoding it is
required to calculate L-values from the derived probabilities.



VI. TURBO DECODING

With the ability of soft-output decoding, we can utilize the
soft-outputs for turbo decoding. In order to do so, the systematic
data bits have to be encoded twice. The first encoding can be
performed as shown in Eq. 1. The second encoding requires an
additional interleaver prior to the encoding. We only investigate
an interleaver of the length of the systematic bits of one
code word. The interleaved data bits are bit reverse to the
uninterleaved data bits. This short interleaver enables similar
delays as for the original code length. Finally the uninterleaved
and the parity bits of the first encoder and the second encoder
are multiplexed to the code word which is transmitted.

Fig. 1 shows the schematic structure of a turbo decoder. The
received code word y is separated into systematic bits and
the parity bits of the first encoder and the parity bits of the
second encoder. Based on the soft-input the encoders calculate
soft-outputs as described in section V. The encoder output,
subtracted by their soft-input, result in the extrinsic information
of the decoding process. This extrinsic information is directed
to the other encoder and is added to the soft information of
the received systematic bits.
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Fig. 1. Schematics of turbo decoding

VII. SIMULATION RESULTS

For the simulation results Hamming codes of a code word
length for 7 till 63 bit were investigated. Fig. 2, 3, 4 and 5
illustrate the performance of the different decoding strategies
for a certain code word length. Tab. II summarizes the results
for all non-iterative codes. Fig. 2 shows the bit error rate of
the 7, 4-Hamming code for different types of decoding. It is
shown that the decoding performance of the duet and triplet
decoding is quite similar and very close to the union bound
which is an upper bound for the bit error probability after
maximum likelihood decoding. For the evaluation we focus on
a BER= 10−4. The coding gain amounts to 0.31 dB for the
HDD and 1.66 dB for the duet decoding.

TABLE II
SIMULATION RESULTS FOR REQUIRED Eb/N0 IN dB FOR A BIT ERROR

RATE OF 10−4 AND THE RESULTING CODING GAIN (UNCODED 8.37dB FOR
BER = 10−4)

Nc Kc HDD Gain Duets Gain Triplets Gain
7 4 8.06 0.31 6.71 1.66 6.67 1.7

15 11 7.42 0.95 6.14 2.23 6.04 2.33
31 26 7.17 1.20 6.02 2.35 5.88 2.49
63 57 7.16 1.21 6.11 2.26 5.92 2.45
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Fig. 2. Bit error rate for different types of decoding for a 7, 4-Hamming
code

The extension of the code word length, up to 15 bit, results
in a further performance gain. It is also apparent that the
difference between duet decoding and triplet decoding rises.
The coding gain amounts to 0.95 dB for the HDD and 2.23 dB
for the duet decoding. Further 0.1 dB can be gained by triplet
decoding.
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Fig. 3. Bit error rate for different types of decoding for a 15, 11-Hamming
code

The 32, 26-Hamming code obtained the best results for the
non-iterative codes, for duets as well as for triplets. Fig. 4
shows that the coding gain amounts to 2.35 dB for the duet
decoding and 2.49 dB for the triplet decoding.
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Fig. 4. Bit error rate for different types of decoding for a 31, 26-Hamming
code

Quite a similar picture can be drawn for the 63, 57-Hamming
code which has the highest code rate (Rc = 0.905) of the
considered Hamming codes (see Fig. 5). The coding gain is
lower than for the 32, 26-Hamming code (2.26 dB gain for the
duet and 2.45 dB gain for the triplets), but the bit error curve
falls more sharply. It is also shown that the difference between
duet and triplet decoding is the highest with 0.19 dB.
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Fig. 5. Bit error rate for different types of decoding for a 63, 57-Hamming
code

Fig. 6 shows the simulation results of the bit error rate of
turbo decoding with the 63, 57-Hamming code as a component
code. The soft-outputs for the turbo decoding were calculated
as shown in section V for double and triple errors. The turbo
decoder considering single error, duets and triplets performs
0.36 dB better than the non-iterative triplet decoder. Turbo
decoding only considering single and double errors leads to no
further gain compared to non-iterative duet or triplet decoding.
In fact, the coding gain decreases by 0.5 dB compared to
non-iterative duet decoding. This can be explained with the
small numbers of comparison with other valid code words
which lead to an inaccurate soft-output after the decoding

process. In addition, the assumption of a normalization for∑
i

Pi = 1 can lead to inaccurate soft-outputs.
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Fig. 6. Comparison of non-iterative decoding and turbo decoding for duet
and triplet decoding

VIII. CONCLUSION

We have proposed a soft-input Hamming decoder which
either considers error patterns with up to 2 or up to 3
errors belonging to the determined syndrome. The complexity
of duet decoding rises linearly with the code word length
and quadratically for triplet decoding. The duet decoding
can gain up to 1.35 dB compared to hard decision decoding
(BER= 10−4). Considering error patterns up to 3 errors gains
further 0.2 dB, where the gain for triplet decoding increases
with the code word length. Furthermore, we proposed a
soft-output decoder based on the soft-input Hamming decoder.
The soft-outputs where utilized for turbo decoding. It was
shown that duet decoding is unsuitable for turbo decoding, due
to the poor quality of the soft-outputs. The turbo decoding
based on triplet decoding (69, 57-Hamming code) showed a
performance gain of 0.36 dB compared to the triplet decoding
of the 63, 57-Hamming code. These results were obtained with
the smallest possible interleaver of one data word length.
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