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Abstract—In the digital simulation of non-linear audio effect
circuits, the arising non-linear equation generally poses the main
challenge for a computationally cheap implementation. For any
but the simplest circuits, using an iterative solver at execution
time will be too slow, while exhaustive look-up tables quickly grow
intolerably large. To better cope with the situation, in this paper
we propose to store solutions non-uniformly sampled from the
parameter space to enable an iterative solver to quickly converge
when being started from the closest initial solution. Efficient
look-up of this closest solution is realized by using a k-d tree.
The method is supported by a step to reduce the dimension of
the parameter space and a linear extrapolation from the closest
solution stored to the actually needed parameter vector.

I. INTRODUCTION

Digital simulation of analog audio processing circuits is
an ongoing research topic. Various methods exist to derive a
mathematical model for an analog circuit in a systematic way,
most notably wave digital filters [1], [2], port-Hamiltonian
approaches [3], and state-space based approaches [4], [5].
Unavoidably, if the circuit to model contains non-linear el-
ements like diodes, transistors, vacuum tubes, or saturating
transformers, the resulting model will include a non-linear
equation that in general will not have a closed-form solution.
Without special measures, solving these non-linear equations
at run-time will typically be prohibitively slow for non-trivial
circuits. In this paper, we propose a novel scheme to store pre-
computed solutions in a k-d tree instead of commonly used
linearly indexed look-up tables.

Due to their generality, we consider non-linear equations of
the form

f(q) = f(Dqx̄ + Eqū + Fqz) = 0 (1)

from [5]. Here, x̄ and ū denote the circuit’s states (e.g. capac-
itor charges) and source values, respectively, after appropriate
time discretization, while z is the vector of unknowns to
be solved for. Other forms of non-linear equations, e.g. as
derived in [4], can be easily rewritten to this form. It should
be noted that Fq is tall, i.e., it has more rows than columns,
hence it is not sufficient to find a single permissible q∗

such that f(q∗) = 0 and then solve the linear system
Fqz = q∗−Dqx̄−Eqū for new values of x̄ and ū, as it will
in general not have a solution. Instead, for every change of x̄
or ū, i.e. for every time step, the non-linear system has to be
solved.

Assuming a good initial estimate z(0) of the solution, New-
ton iteration or variants thereof are an effective strategy for
solving (1). Besides using the same z(0) for every time step,
a common strategy is to use the solution found for the previous
time step, assuming only small inter-sample differences to
occur in x̄ and ū. In [6], a more elaborate scheme is proposed
where (1) is simplified such that an explicit solution can be
found analytically which is then used to compute z(0).

However, none of these approaches guarantee to deliver
a z(0) sufficiently close to the correct solution, and therefore
the Newton solver may need a large number of iterations,
or worse, not converge at all. To help convergence, different
approaches like damped Newton iteration [7], homotopy [4],
or heuristical modification of the Newton step [6] have been
successfully employed. However, the total number of required
iterations may still be prohibitively large, especially for more
complex circuits.

An alternative is to use look-up tables [4], [8] which provide
constant run-time. Unfortunately, for non-trivial circuits, these
tables need to be indexed by vectors, either

(
x̄T ūT

)T
or Dqx̄ + Eqū, resulting in memory requirements growing
exponentially with the dimension of the index vector. In [8],
the memory requirements were successfully reduced by non-
uniformly sampling the parameter space. However, with a table
based solution, the values to include in the table need to be
chosen for each dimension independently. Therefore, in this
work, we propose an alternative where the solutions are stored
in a tree-like structure, allowing arbitrarily distributed values
to be stored and efficiently looked up.

II. DIMENSION REDUCTION

Before discussing the tree-based approach, we will recon-
sider (1) to try to reduce the dimension of the parameter vector.
First, it makes sense to decompose ū into constant entries u0

and time-varying entries ũ and decompose Eq accordingly
such that Eqū = Eq,0u0 + Ẽqũ. The straight-forward choice
of the parameter vector then would be Dqx̄+Ẽqũ. Apparently,
the result is confined to the sub-space spanned by the columns
of
(
Dq Ẽq

)
. The approach in [5] leaves some freedom in

the computation of Dq and Ẽq, hence they can be chosen so
as to minimize the dimension of this sub-space; in particular,
they can always be chosen to be orthogonal to Fq.
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Fig. 1. Exemplary treble booster circuit.

Now, we can factorize
(
Dq Ẽq

)
= Q ·

(
D̂q Êq

)
such

that
(
D̂q Êq

)
has full row-rank (using e.g. QR decomposi-

tion). Hence, we can rewrite (1) as

f(q) = f(q0 + Qp + Fqz) = 0 (2)

with
q0 = Eq,0u0 (3)

and the parameter vector

p = D̂qx̄ + Êqũ (4)

of minimal dimension.
As an example, we shall consider the circuit of Fig. 1.

Note that the schematics include a diode anti-parallel to the
9 V supply voltage (to protect the device when connected to
a supply voltage of wrong polarity) as well as a stabilizing
100 µF capacitor, both of which are found in typical circuits
but could be eliminated from the model without changing its
input/output behavior if the supply voltage source is modeled
as ideal. However, we include them here to study how well
the proposed method handles them.

Invoking the machinery of [5] for a sampling rate of
44.1 kHz and pulling out constant elements from Eqū as
discussed above, we obtain

q0 =


−9
0

3.22× 10−7

−1.704× 10−7

8.162× 10−4

−8.651× 10−4

 Ẽq =


0
0

4.945× 10−8

−1.592× 10−8

1.72× 10−4

7.344× 10−6

 (5)

Dq =


0 0 0
0 0 0
0 −2.248× 101 1.521
0 7.234 −8.1× 10−1

0 −7.817× 104 3.831× 103

0 −3.338× 103 −4.159× 103

 (6)

Fq =


0 0 0
1 0 0
0 1 0
0 0 1
0 −2.917× 10−4 9.705× 10−5

0 9.705× 10−5 −1.054× 10−4

 (7)

and

f(q) =

 IsD · (e
q1
ηDvT − 1)− q2

IsE · (e
q3
ηEvT − 1)− βr

1+βr
IsC · (e

q4
ηCvT − 1)− q5

− βf
1+βf

IsE · (e
q3
ηEvT − 1) + IsC · (e

q4
ηCvT − 1)− q6

 ,

(8)
where

(
q1 · · · q6

)
= qT . The nonlinear equation in (8)

consists of the Shockley equation for the diode in the first
row and the Ebers–Moll equations for the transistor in the
second and third row, where vT is the thermal voltage (usually
25 mV), η and Is denote the emission coefficients and the
saturation currents, respectively, and βf and βr are the forward
and reverse current gain. The entries in the vector q are, in
that order, the diode voltage and current, the base–emitter and
base–collector voltage and the emitter and collector current.
From the matrices in (5)–(6), it is obvious that diode voltage
and current are independent of the capacitor states and input
voltage; instead, the voltage is fixed at −9 V and the current
needs to be solved for (which is trivial in this case). Likewise,
it is apparent that the state of the capacitor parallel to the
supply voltage, corresponding to the first entry in x̄ and hence
the first column of Dq, has no influence on the nonlinear
equation.

At first glance, it now looks like the nonlinear equation de-
pends on a three-dimensional parameter vector corresponding
to the input voltage and the states of the two 2.2 nF capacitors.
However, by applying the QR-decomposition to

(
Dq Ẽq

)
as

discussed above, we find

Q =


0 0
0 0

2.873× 10−4 −1.094× 10−4

−9.247× 10−5 1.094× 10−4

9.991× 10−1 −4.267× 10−2

4.267× 10−2 9.991× 10−1

 (9)

D̂q =

(
0 −7.824× 104 3.65× 103

0 0 −4.319× 103

)
(10)

Êq =

(
1.721× 10−4

0

)
(11)

so that, in fact, a two-dimensional parameter vector p =
D̂qx̄ + Êqũ suffices.

III. k-D TREES

Points in a k-dimensional space can be effectively organized
in a k-d tree, which is similar to an ordinary (binary) search
tree, but branches on different dimensions in different layers of
the tree to partition the space [9]. A toy example is shown in
Fig. 2, where a tree for four points in two dimensions is shown.
At the root, the space is partitioned in the first dimension at
x1 = 0.59. In the second level, the space is partitioned in
the second dimension, with boundary values depending on the
branch taken at the root.

When searching for a point contained in the tree, the correct
point is found by traversing the tree from the root to the
respective leaf once. However, we are also interested in finding
the nearest neighbor to a point not contained in the tree. This is
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Fig. 2. Example of a k-d tree for four points in k = 2 dimensions. (a) Points
A–D and induced space partitioning and point Z to search for. (b) Binary tree.

a harder problem as the first answer obtained from traversing
the tree may not be the best one. Consider the point marked Z
in Fig. 2a. The nearest neighbor we would like to obtain is
point B, but the tree search yields point C. An efficient strategy
to finding the nearest neighbor is best bin first [10], where for
every branch taken, the alternative along with the distance of
the boundary value to the query point is recorded. After the
first candidate has been determined (C in the example), the
alternative with the lowest distance is tried next, providing new
alternatives itself. In the example, the boundary at x1 = 0.59
is closest to the query point Z, taking the left branch on the
second try yields point B.

Additionally, the recorded distances to the boundary provide
a stopping criterion: Once the best point found so far is closer
to the query point than the boundary of the best untried
alternative, no closer match can be found. The distances have
to be recorded for every dimension individually, resulting in
the following algorithm:
Require: k-d tree T , query point p
A← {}
a← (Root(T ),0)
p∗ ← any point from T
while ‖a[2]‖ < ‖p− p∗‖ do
n← a[1]
while not IsLeaf(n) do
d← Dim(n)
v ← Val(n)
∆← a[2]
∆d ← pd − v
if pd ≤ v then
n← LeftChild(n)
A← A ∪ {(RightChild(n),∆)}

else
n← RightChild(n)
A← A ∪ {(LeftChild(n),∆)}

end if
end while
if ‖p− Point(n)‖ < ‖p− p∗‖ then
p∗ ← Point(n)

end if
a← PopBestAlternative(A)

end while
return p∗

Here A keeps the alternatives yet to consider as pairs a, where
the first component a[1] is the node in the tree from where
to restart the search and the second component a[2] holds a
vector ∆ of distances. In particular, for every “wrong” branch
taken, the distance of the decision boundary to the query
point p is recorded for the respective dimension. The operation
PopBestAlternative(A) removes the entry a with the lowest
‖a[2]‖ from A and returns it. Hence, A is best implemented
as a heap-based priority queue. Further obvious optimizations
include not adding to A alternatives where ∆ is already too
large and pruning from A every time p∗ is updated.

Oftentimes, the assumption of small inter-sample differ-
ences is valid, so the solution from the previous time-step
should also be taken into consideration. So, instead of initial-
izing p∗ with any point from the cache as in the algorithm
above, it makes sense to use the parameter vector p from the
previous time-step. This may serve to both limit the tree search
and provide a solution that is even closer to the current p than
the best one cached.

IV. EXTRAPOLATION

Once a p∗ close to p along with the corresponding solu-
tion z∗ has been retrieved, instead of using z∗ directly, we
can extrapolate by linearizing f(q) as

f
(
q0 + Q(p∗ + ∆p) + Fq(z∗ + ∆z)

)
≈

f
(
q0 + Qp∗ + Fqz

∗)︸ ︷︷ ︸
=0

+JQ∆p + JFq∆z (12)

where J denotes the Jacobian of f at q0 + Qp∗ + Fqz
∗.

Letting ∆p = p − p∗ and ∆z = z(0) − z∗ and setting the
right-hand-side of (12) to zero, we obtain

z(0) = z∗ − (JFq)−1JQ(p− p∗). (13)

Note that as J is rectangular, its two occurrences do not
cancel. The z(0) thus obtained can now be used as the initial
solution for a Newton solver.

V. POPULATING THE CACHE

Now that we have an efficient means of retrieving pre-
computed solutions and extrapolating them to the current
parameter vector, the question remains how to choose which
solutions to store. Unfortunately, finding the optimal set of
solutions to store remains an open issue. We propose here a
simple heuristic where the solution cache is gradually build up
while trying to solve the non-linear equation for many possible
values of p. For every p we run the following steps:

1) Retrieve closest solution p∗ from cache (or the previous
time-step) as described in section III.

2) Extrapolate to current p as described in section IV.
3) Try to solve (1) using Newton’s method with the initial

solution z(0) thus determined.
4) a) If Newton’s method converged in no more than a

predefined number of iterations Nmax, proceed to
next p.



b) If Newton’s method required more than Nmax to
converge, add solution to cache and proceed to
next p.

c) If Newton’s method did not converge, use a homo-
topy approach to find solutions on the line from
p∗ to p by applying steps 2–4 at the intermediate
points, gradually moving towards p while poten-
tially adding additional points to the cache. Add
the solution finally found to the cache and proceed
to next p.

For simple circuits, where the dimensionality of p is low
enough and bounds on its possible values can be derived, the
cache can be filled is a systematic fashion. To do so, the
volume containing the possible values of p is divided into
a fine grid and the above steps executed at each grid point.
To avoid asymmetries or otherwise skewed distributions of the
cached solutions, randomizing the order in which the solutions
are tried is recommended. Note that sometimes new cached
solutions actually increase the number of needed iterations at
near-by points—the closest p∗ does not necessarily yield the
best z(0)—so the whole procedure should be repeated until no
new solutions need to be cached. Assuming a sufficiently fine
grid, Newton’s method now should never require more than
Nmax iterations when running the model.

For more complex circuits, using the gridded approach
quickly becomes infeasible due to the exponential growth of
the number of points to consider when the dimensionality of
p increases. In fact, just determining the range of values the
parameter vector p can assume for a bounded input ū is a
surprisingly tough problem. Therefore, we employ a heuristic
where solutions are stored while the model is executed on
actual data, gradually building the solutions cache. After a
sufficiently long training phase with varying input stimuli,
Newton’s method should never require more than Nmax itera-
tions. However, how best to choose the input signals and how
to determine when the training can safely by stopped are still
open research questions.

VI. EXPERIMENTAL RESULTS

To evaluate the proposed method, it has been implemented
as part of the ACME.jl1 project, a package for circuit sim-
ulation in the Julia programming language. The following
examples again use a sampling rate of 44.1 kHz throughout.

We first consider the simple circuit of Fig. 1. If we limit the
input to ±10 V, we can safely assume the capacitor voltages
to stay within ±19 V, which after generously rounding leads
to −5.2× 10−3 ≤ p1 ≤ 5.2× 10−3 and −1.9× 10−4 ≤
p2 ≤ 1.9× 10−4. While z1 (the diode current) is constant
at −350 pA, the values of the solution components z2 and z3
in this range are shown in Fig. 3. We observe linear behavior
for negative values of p1, a transitional region around p1 = 0
slightly shifting with the value of p2, and saturation effects
occurring for positive p1.

1Available at https://github.com/HSU-ANT/ACME.jl.
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Fig. 3. Components (a) z2 and (b) z3 of the solution of (1) for the circuit
of Fig. 1.

For this simple circuit, the gridded cache filling strategy
can be employed. In particular, we subdivide the range of
p1 into 10 000 points and the range of p2 into 400 points.
We then solve the nonlinear equation at all 4 000 000 points
in randomized order using the procedure of section V with
Nmax = 5 to fill the cache. Depending on the randomized
order, typically two–three repetitions are required until no
more new solutions have to be cached, making the training
take a couple of minutes on the author’s Xeon E5-1620 PC.

The cached solutions thus determined are marked in Fig. 4.
We clearly see the high number of required points in the
transitional region of the solution, while no solutions need
to be cached for the linear part thanks to the extrapolation
mechanism. In the mildly curved saturation region, only few
extra points are required. In total, the cache holds 388 points,
with the exact number and position again varying with the
randomized order during cache population. As can also be seen
in Fig. 4, this is sufficient to even keep the required number
of iterations well below the maximum allowed Nmax = 5 over
wide areas.

As a second example, we consider a circuit of moderate
complexity, namely Der SuperOver2, a clone of the Boss

2Schematics are available at http://diy.musikding.de/wp-content/uploads/
2013/06/superoverschalt.pdf.
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Fig. 4. Number of iterations needed to solve (1) for the circuit of Fig. 1 using
the closest of the cached solution marked with as initial solution z(0).

SD-1 pedal. We model the operational amplifiers as ideal, but
include the diode anti-parallel to the supply voltage as for the
treble booster. This gives a total of 4 diodes and 2 transistors to
model, so that f(q) is a system of 8 equations in 16 variables.
The number of entries in the state vector x̄, corresponding to
the number of capacitors in the circuit, is 11. The dimension
reduction step of section II leads to a 7-dimensional parameter
space.

A systematic pre-computation step on a fixed grid is no
longer feasible for 7 dimensions, so a training phase with
varying input stimuli is employed instead. In particular, the
following stimuli have been applied:

• a linear sine-sweep from 0 Hz to 22.05 kHz and back
to 0 Hz with a total duration of 20 s, repeated with
amplitudes varying from 10 mV to 1 V in 10 mV steps

• white noise with a total duration of 120 s, linearly in-
creasing in amplitude from 0 V to 1 V

• two short (clean) electric guitar tracks with a total dura-
tion of 143 s

Due to the larger amount of data to process and the increased
model complexity, the training in this case takes almost an
hour, filling the solution cache with 27 039 solutions.

The model with the trained solution cache is then fed with
another guitar track of 35 s length. Unfortunately, the training
does not suffice to guarantee convergence with Nmax = 5 iter-
ations for the whole track. For 2172 samples (corresponding
to 0.14 % of the track), more iterations are needed and the
found solutions subsequently added to the cache. Only for
88 samples, more than 15 iterations are needed, however, in
the worst case, 500 iterations are required. Nevertheless, on
average, convergence is achieved after only 2.3081 iterations.

We compare to using only the solution from the previous
time step as p∗ and z∗ instead of other cached solutions. By
employing the same extrapolation scheme of section IV to
obtain the initial solution z(0) and the same homotopy Newton
solver, the average number of iterations only slightly increases
to 2.5862, proving the efficacy of the extrapolation scheme.
However, the number of samples which now require more than
15 iterations increases significantly to 4357.

VII. CONCLUSION AND OUTLOOK

The proposed method allows efficient storage and retrieval
of solutions non-uniformly distributed in a multi-dimensional
parameter space. Using these stored solutions to initialize a
Newton solver can greatly reduce the required number of
iterations to converge. The most important open question is
how to choose the stored solutions so as to guarantee a certain
maximum number of iterations will always suffice to achieve
convergence.

It should be noted that the proposed method is not meant to
replace, but rather complement other approaches to speed up
solving the non-linear equation. Especially the decomposition
in (almost) independent sub-circuits [11] is still very attractive.
Not only does it speed up the individual Newton iterations,
it usually also helps reducing the iterations needed. For the
proposed method, it would also mean replacing a single
k-d tree of high dimensionality with multiple trees of lower
dimensionality. Furthermore, the total number of solutions
stored could be reduced: Assuming for simplicity the first
circuit component depends solely on p1 and requires N1

solutions stored and the second component depends solely on
p2 and requires N2 solutions stored, a combined cache would
have to store all N1 ·N2 combinations of p1 and p2, instead of
just N1+N2 for two individual caches. Therefore, automating
such a decomposition is a highly interesting future task.
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