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ABSTRACT

The sound of a vacuum tube guitar amplifier may be significantly
influenced by the non-linear behavior of its output transformer,
which therefore should also be considered in digital simulations.
In this work, we develop a model for inductors and transformers
with the magnetization following the model of Jiles and Atherton.
For this purpose, the original magnetization model is rewritten to
a differential equation with respect to time which can then easily
be integrated into a previously developed circuit simulation frame-
work. The model thus derived is then exercised in the simulation
of three simple circuits where it shows the expected behavior.

1. INTRODUCTION

Non-linear behavior of its output transformer may have a signif-
icant influence on the sound produced by a vacuum tube guitar
amplifier. It is therefore desirable to include this non-linearity
in digital simulations. A commonly used method to do so is the
application of the gyrator-capacitor model, which maps magnetic
quantities to electric ones [1, and references therein]. This allows
complex magnetic topologies to be modeled by mapping them to
corresponding electric circuits. Non-linear effects are then rep-
resented by non-linear resistors and capacitors. While the Jiles-
Atherton model [2, 3] provides a good model of the non-linear
magnetization effects, it is often deemed too complex and replaced
by simpler heuristics.

In this work, we propose an inductor/transformer model that
does apply the Jiles-Atherton magnetization model, but forgoes
the gyrator-capacitor approach. It will hence be restricted to sim-
ple topologies where the magnetic field of all windings is com-
pletely contained by one and the same core and is furthermore
uniform within the core. This holds for toroidal inductors/trans-
formers where the core is thin compared to its diameter. We hope,
however, that it sufficiently approximates other topologies found
in guitar equipment. In [4] and [5], specific circuits (a series LC
oscillator and a tube guitar amplifier) were simulated based on the
Jiles-Atherton model in a similar fashion and very good agreement
to measurements could be observed.

While in [4] and [5] the circuits were approached holistically
using ad-hoc methods, this paper instead aims to develop an induc-
tor/transformer model that can be used in various circuits using a
systematic analysis technique. In particular, the model will be de-
veloped such that it is usable with the methodology developed in
[6].

2. PREVIOUS WORK

In this section, the Jiles-Atherton model of magnetization to be
used in the following will be briefly introduced and the most im-
portant aspects of the employed circuit modeling framework will
be repeated, while a detailed discussion is left to [2] and [6], re-
spectively.

2.1. Jiles-Atherton Model

The Jiles-Atherton model relates magnetic field H and magneti-
zation M via a differential equation. It was originally developed
in [2], but the slightly modified form of the results given in [3] will
be used as a basis here. The magnetization is decomposed as

M = Mrev +Mirr, (1)

where Mrev and Mirr denote the reversible and irreversible mag-
netization component, respectively, both of which depend on the
anhysteretic magnetization Man.

In particular, the reversible magnetization is given by

Mrev = c · (Man −Mirr), (2)

where c is the ratio of normal and anhysteretic initial susceptibili-
ties, while Mirr is implicitly defined with the differential equation

dM

dH
= (1− c) · Man −Mirr

δk − α(Man −Mirr)
+ c · dMan

dH
, (3)

where

δ =

{
1 if H is increasing
−1 if H is decreasing

(4)

denotes the direction of change of H . Furthermore, k, and α are
parameters, where k is a measure of the width of the hysteresis
loop, and α is a mean field parameter, representing inter-domain
coupling [4]. The first term in equation (3) describing the irre-
versible magnetization process has to be set to zero if M −Man

and δ have opposite signs.
The anhysteretic magnetization Man is a function of the effec-

tive field He = H + αM and is responsible for the saturating
behavior. While various mathematical functions could serve as a
model, in [2] the Langevin function

L(x) = coth(x)− 1

x
(5)

with the continuous extension L(0) = 0 (see Figure 1) has been
employed as

Man = Ms · L
(
H + αM

a

)
(6)
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Figure 1: The Langevin function L(x).

with good success, where Ms is the saturation magnetization and
a characterizes the shape of the anhysteretic magnetization.

In [4], further details were modified. First, from equations (1)
and (2), one can find that

Man −Mirr =
1

1− c (Man −M), (7)

which can be substituted in equation (3). Second, the first term of
equation (3) is explicitly multiplied with

δM =

{
1 if δ and Man −M have the same sign
0 otherwise,

(8)

so that

dM

dH
=

(1− c) · δM · (Man −M)

(1− c) · δ · k − α(Man −M)
+ c · dMan

dH
(9)

will be the magnetization model used in this work.

2.2. Circuit Modeling Framework

The circuit modeling framework of [6] allows for a very general
specification of circuit element behavior. While the reader is re-
ferred to [6] for details on how a non-linear state-space model is
derived from these specifications together with a circuit topology,
the form an element model needs to be in shall be briefly repeated
here.

Circuit elements need to enforce a relationship between volt-
ages v and currents i, measured between pairs of their terminals,
and (if needed) states x and their derivatives ẋ with respect to
time. There is some freedom in the choice of terminal pairs to de-
fine v and i. For the transformer model, the obvious choice is to
pair those terminals connected to the same winding. Likewise, the
states x can be defined as is most suitable for the model. For e.g. a
capacitor, either having voltage or charge as state would both work
equally well. As will be detailed in Sec. 3, for the non-linear in-
ductor/transformer model, the state vector will comprise magnetic
field and magnetization.

To facilitate faster simulations, linear and non-linear equations
are strictly separated in [6]. For the element description, all non-
linear equations have to be formulated in terms of an auxiliary vec-
tor q which in turn is coupled with v, i, x, and ẋ by linear equa-
tions. Once more, the element model has all freedom in choosing
a suitable q. In the model to be developed, it will hold magnetic
field and magnetization along with their derivatives.

All linear equations are collected in one system

Mvv + Mii + Mxx + Mẋẋ + Mqq = u, (10)

where the matrices Mv, Mi, Mx, Mẋ, and Mq, and the vector u
have to be provided by the element model to obtain the desired
behavior. These, together with an implicit non-linear equation

f(q) = 0, (11)

constitute the element model. The matrices and the function f(q)
for the non-linear inductor/transformer will be derived in Sec. 3.

3. MODEL DEVELOPMENT

In this section, the magnetization model of equation (9) will be
rewritten and the magnetic quantities will be related to electric
quantities to yield an element model suitable for the circuit mod-
eling technique of [6]. In particular, the differential equation of
equation (9) has to be rewritten such that only derivatives with
respect to time occur, as the method of [6] cannot handle other
derivatives.

In the first step, dMan
dH

shall be replaced by applying the chain
rule of differentiation, giving

dMan

dH
=
Ms

a

(
1 + α

dM

dH

)
L′
(
H + αM

a

)
, (12)

where
L′(x) =

d

dx
L(x) =

1

x2
− coth2(x) + 1 (13)

with the continuous extension L′(0) = 1
3

is the first derivative of
the Langevin function. Substituting equation (12) in equation (9)
yields

dM

dH
=

(1− c) · δM · (Man −M)

(1− c) · δ · k − α (Man −M)

+ c · Ms

a

(
1 + α

dM

dH

)
L′
(
H + αM

a

)
. (14)

Observing that
dM

dt
=
dM

dH

dH

dt
, (15)

the differential equation can thus be transformed into one where
all derivatives are with respect to time by multiplying with dH

dt
,

giving

dM

dt
=

(1− c) · δM · (Man −M)

(1− c) · δ · k − α (Man −M)

dH

dt

+ c · Ms

a

(
dH

dt
+ α

dM

dt

)
L′
(
H + αM

a

)
. (16)

Note also that δ = sign
(
dH
dt

)
.

In equation (16), the derivatives of H and M are required,
which therefore constitute the state vector

x =

(
H
M

)
(17)

of the model being developed. And while M is needed as such, H
only appears as H+αM

a
, so the auxiliary vector linking linear and
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non-linear equations can be chosen as

q =


H+αM

a

M
dH
dt
dM
dt

 =


x1+αx2

a

x2

ẋ1

ẋ2

 . (18)

By subtracting dM
dt

= q4, equation (16) can then be rewritten in
the required form as

f(q) =
(1− c) · δM · (Man − q2)

(1− c) · δ · k − α (Man − q2)
q3

+ c · Ms

a
(q3 + αq4)L′ (q1)− q4 = 0 (19)

with

Man = Ms · L(q1) (20)
δ = sign(q3) (21)

δM =

{
1 if δ and Man − q2 have the same sign
0 otherwise,

(22)

which now only depends on constant parameters and entries of the
auxiliary vector q.

Next, the magnetic quantities have to be related to the elec-
tric quantities. For simplicity, we only consider a toroidal induc-
tor which is thin compared to its diameter so that the magnetic
field is uniform inside the core. Assuming K individual wires
having n1, . . . , nK turns around the core and carrying currents
i1, . . . , iK , the magnetic field is given as

H =
1

πD

K∑
k=1

nkik (23)

by Ampère’s law, where D is the torus’ diameter. From the flux
Φ = µ0A · (H + M), where A is the cross-sectional area of the
core, the voltages v1, . . . , vK are given by Faraday’s law as

vk = nk ·
d

dt
Φ = µ0Ank ·

(
dH

dt
+
dM

dt

)
. (24)

Letting v =
(
v1 . . . vK

)T and i =
(
i1 . . . iK

)T and
collecting equations (24), (23) and (18) in a single equation sys-
tem of the form of equation (10), the model matrices can thus be
determined as

Mv =



1 · · · 0
...

. . .
...

0 · · · 1
0 · · · 0
0 · · · 0
0 · · · 0
0 · · · 0
0 · · · 0


, Mi =



0 · · · 0
...

. . .
...

0 · · · 0
n1 · · · nK
0 · · · 0
0 · · · 0
0 · · · 0
0 · · · 0


, (25)

Mx =



0 0
...

...
0 0
−πD 0
− 1
a

−α
a

0 −1
0 0
0 0


, Mẋ =



−µ1An1 −µ1An1

...
...

−µ0AnK −µ0AnK
0 0
0 0
0 0
−1 0
0 −1


,

(26)

Mq =



0 0 0 0
...

...
...

...
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


and u =



0
...
0
0
0
0
0
0


, (27)

(28)

where Mv and Mi have K columns and all matrices have K + 5
rows. The upper K rows correspond to equation (24) for k =
1, . . . ,K, the row below to equation (23) multiplied with πD, and
the lower four rows to equation (18).

4. NUMERICAL CONSIDERATIONS

For a successful implementation of the developed model, some
numerical considerations are in order that will be detailed in the
following.

First, the definition of the Langevin function and its derivatives
as stated above are very susceptible to rounding errors for values
close to zero. For numerical evaluation, they are better replaced
with a truncated Taylor series around zero as

L(x) =

{
coth(x)− 1

x
for |x| > 10−4

x
3

otherwise,
(29)

L′(x) =

{
1
x2
− coth2(x) + 1 for |x| > 10−4

1
3

otherwise,
(30)

L′′(x) =

{
2 coth(x) ·

(
coth2(x)− 1

)
− 2

x3
for |x| > 10−3

− 2
15
x otherwise,

(31)

where the second derivative L′′(x) = d2

dx2
L(x) will be used mo-

mentarily. Furthermore, to avoid a division-by-zero problem when
q = 0, we let δ = 1 if q3 = dH

dt
= 0, noting that the only term it

occurs in is multiplied by q3 anyway.
For numerical solution of systems containing equation (19),

the Jacobian

Jf (q) =
(
df(q)
dq1

df(q)
dq2

df(q)
dq3

df(q)
dq4

)
(32)

of f(q) will typically be needed, which can be determined as

df(q)

dq1
=

(1− c)2δMδkMsL
′(q1)(

(1− c)δk − α(Man − q2
)2 q3

+
cMs

a
(q3 + αq4)L′′(q1) (33)
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1 function transformer(::Type{Val{:JA}}; D=2.4e-2, A=4.54e-5, ns=[],
2 a=14.1, α=5e-5, c=0.55, k=17.8, Ms=2.75e5)
3 const µ0 = 1.2566370614e-6
4 nonlinear_eq = quote
5 coth_q1 = coth(q[1])
6 a_q1 = abs(q[1])
7 L_q1 = a_q1 < 1e-4 ? q[1]/3 : coth_q1 - 1/q[1]
8 Ld_q1 = a_q1 < 1e-4 ? 1/3 : 1/q[1]^2 - coth_q1^2 + 1
9 Ld2_q1 = a_q1 < 1e-3 ? -2/15*q[1] : 2*coth_q1*(coth_q1^2 - 1) - 2/q[1]^3

10 δ = q[3] > 0 ? 1.0 : -1.0
11
12 Man = $(Ms)*L_q1
13 δM = sign(q[3]) == sign(Man - q[2]) ? 1.0 : 0.0
14
15 den = δ*$(k*(1-c))-$(α)*(Man-q[2])
16 res[1] = $(1e-4/Ms) * ($(1-c) * δM*(Man-q[2])/den * q[3]
17 + $(c*Ms/a)*(q[3]+$(α)*q[4])*Ld_q1 - q[4])
18 J[1,1] = $(1e-4/Ms) * ($((1-c)^2*k*Ms) * δM*Ld_q1*δ/den^2 * q[3]
19 + $(c*Ms/a)*(q[3]+$(α)*q[4])*Ld2_q1)
20 J[1,2] = $(1e-4/Ms) * -$((1-c)^2*k) * δM*δ/den^2 * q[3]
21 J[1,3] = $(1e-4/Ms) * ($(1-c) * δM*(Man-q[2])/den + $(c*Ms/a)*Ld_q1)
22 J[1,4] = $(1e-4/Ms) * ($(c * Ms/a * α)*Ld_q1 - 1)
23 end
24 Element(mv=[speye(length(ns)); spzeros(5, length(ns))],
25 mi=[spzeros(length(ns), length(ns)); ns.’; spzeros(4, length(ns))],
26 mx=[spzeros(length(ns), 2); -π*D 0; -1/a -α/a; 0 -1; 0 0; 0 0],
27 mxd=[-µ0*A*ns -µ0*ns*A; 0 0; 0 0; 0 0; -1 0; 0 -1],
28 mq=[zeros(length(ns)+1,4); eye(4)], nonlinear_eq = nonlinear_eq)
29 end

Figure 2: Julia/ACME source code of the developed inductor/transformer model.

df(q)

dq2
= − (1− c)2δMδk(

(1− c)δk − α(Man − q2)
)2 q3 (34)

df(q)

dq3
=

(1− c)δM · (Man − q2)

(1− c)δk − α (Man − q2)
+
cMs

a
L′(q1) (35)

df(q)

dq4
=
cMsα

a
L′(q1)− 1, (36)

where the discontinuities in δ and δM have been ignored.
Finally, note that q4 can assume rather large values, therefore,

small relative errors may still yield values for the residual f(q)
several orders of magnitude larger than, say, small relative errors
in a diode current if that is used to define a diode’s non-linear
equation. If several different non-linear components are used in
the same circuit, it would therefore be necessary to have different
convergence criteria for the individual residuals of the combined
non-linear equation. Alternatively, one can scale f(q) (and hence
Jf (q)), which was done in the implementation used here to eval-
uate the derived model.

5. IMPLEMENTATION AND RESULTS

The proposed model has been implemented as part of the ACME1

project, a circuit simulation package for the Julia programming
language2. Julia is a relatively young programming language, still
evolving rapidly. It is intended to be used in technical comput-
ing, providing a high level of abstraction with convenient syntax
combined with the ability to generate highly efficient code [7, 8].
ACME is an implementation of the method of [6], providing a cir-
cuit simulation framework and a testbed for further developments,

1https://github.com/HSU-ANT/ACME.jl
2http://julialang.org/

especially additional and improved element models and automated
optimization techniques for faster simulations. ACME is imple-
mented in Julia mainly due to two language features, namely good
support for matrix operations and linear algebra (similar to e.g.
MATLAB) and the ability to work with Julia expressions in the
language itself, combined with the efficiency of the code being
generated. Good matrix support is important as [6] makes heavy
use of matrices. Being able to manipulate Julia expressions from
within the language allows to generate a single function represent-
ing the non-linear equation of a whole circuit with multiple non-
linear elements on the fly.

The code corresponding to the proposed model given by equa-
tions (19) to (22) and (25) to (36) is shown in Figure 2. While a
general introduction into Julia and ACME are beyond the scope of
this paper, the main features of Figure 2 shall be explained in the
following. The first two lines start the definition of the function
transformer (ended in line 29), where the parameters of the
Jiles-Atherton model and the core geometry occur as function ar-
guments with default values taken from [4]. The number of turns
of the individual windings are passed as a vector to the argument
ns, defaulting to the empty vector, i.e. a transformer without any
windings. In lines 4 to 23, the non-linear equation is defined as
a Julia expression: The code inside the quote ... end block
is parsed but not executed, rather, its abstract syntax tree is stored
in nonlinear_eq. While parsing, values can be spliced in us-
ing the $(...) syntax, inserting the model parameters as con-
stants in the expression. To evaluate the non-linear equation, first
the Langevin function and its derivatives are computed in lines 5
to 9, then δ, Man and δM are determined in lines 10 to 13. Be-
fore computing the residual and the Jacobian in lines 16 to 22, the
common denominator den occurring in them is pre-computed in
line 15. Here, a scaling as mentioned above with 10−4/Ms is ap-
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i = H · 1 m

(a)

v = 100 mV

(b)

v = 5 V · sin(2πft)

R1 = 10 Ω

R2 = 10 Ω

(c)

Figure 3: Simulated circuits: (a) inductor driven by a current
source ramped up and down to obtain hysteresis loops; (b) induc-
tor driven by constant voltage; (c) simplified output transformer
stage driven by sinusoidal voltage.

Table 1: Model parameters used in the simulations, taken from
[2] and [4]. Note that the definition of c is different in [2]; there
c = 0.2, which is converted to 0.2/(1 + 0.2) ≈ 0.17 here.

parameter value in [2] value in [4]

Ms 1.6× 106 A/m 2.75× 105 A/m
a 1.1× 103 A/m 1.41× 101 A/m
α 1.6× 10−3 5.00× 10−5

k 4.0× 102 1.78× 101

c 1.7× 10−1 5.50× 10−1

D — 2.40× 10−1 m
A — 4.54× 10−5 m2

n — 230

plied. Note that the residual res and the Jacobian J are assumed
to be a vector and a matrix, respectively, so the assignment of the
results is to specific entries of them. The ACME framework will
take care that the resulting expression is used in a context where
res and J of appropriate size as well as the auxiliary vector q
are defined. Finally, in lines 24 to 28, the non-linear equation is
combined with the matrices of equations (25) to (27) to yield the
desired model description. The syntax for matrix definition is very
similar to MATLAB; speye and spzeros create sparse identity
and all-zero matrices, respectively.

To verify model and implementation, the three simple circuits
shown in Figure 3 are simulated using ACME version 0.1.1. The
circuit of Figure 3a is used to obtain magnetic hysteresis loops,
while the circuit of Figure 3b shall exemplify the behavioral dif-
ference between a linear and a non-linear inductor. Finally, the
circuit of Figure 3c is a simplified model output transformer stage,
demonstrating the model in a likely application.

For the circuit in Figure 3a, the core parameters from [2] (see
Table 1) are used and the geometry chosen as D = 1

π
m, A =

1 m2, n = 1, so that current and magnetic field have the same
numeric value. The sourced current is ramped up and down to
increasing values and the magnetization is recorded. As can be
seen in Figure 4, the resulting magnetic hysteresis loops are in
good agreement with the results of [2].

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

H in kA/m

0.5

−0.5

M/Ms

Figure 4: Comparison of magnetic hysteresis loops from [2,
Fig. 12] (black) with the ones obtained with the implemented
model of Figure 2 (overlaid in gray) using the same parameters
(given in Table 1).

0 10 20 30
t in ms

0

10

20

30

i in mA

Figure 5: Inductor current i over time t for constant-voltage exci-
tation with 100 mV using the inductor parameters from [4] given
in Table 1.

In the second experiment, corresponding to the circuit of Fig-
ure 3b, the parameters determined for a real inductor in [4] are
employed. A constant voltage of 100 mV is applied and the cur-
rent is recorded. For a linear inductor, the current would increase
linearly, being proportional to the integrated voltage. For a non-
linear inductor where the core saturates, the effective inductance
is decreased, leading to a faster current increase. This is exactly
the behavior that can be observed in Figure 5: At the beginning,
the current grows linearly, matching the linear behavior. For larger
currents, however, the core reaches saturation, and accordingly the
current grows ever faster.

Finally, a transformer circuit vaguely reminiscent of a tube
amplifier’s output transformer stage as shown in Figure 3c is ex-
amined. Here R1 = R2 = 10 Ω model the tube stage output
impedance and load impedance, respectively. Core parameters and
geometry are as in [4] again, with n1 = 230 turns on the primary
side and n2 = 23 turns on the secondary side. Note that the in-
ductor would be grossly undersized for a real amplifier. The code
setting up the corresponding model in ACME is shown in Figure 6.
In lines 1 to 4, the transformer model is instantiated by calling the
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1 l = transformer(Val{:JA}, Ms=2.75e5, a=14.1,
2 α=5e-5, k=17.8, c=0.55,
3 D=2.4e-2, A=4.54e-5,
4 ns=[230, 23])
5 vsrc = voltagesource()
6 r1 = resistor(10)
7 r2 = resistor(10)
8 vprobe = voltageprobe()
9 circ = Circuit()

10 connect!(circ, vsrc[:+], r1[1])
11 connect!(circ, r1[2], l[1])
12 connect!(circ, l[2], vsrc[:-])
13 connect!(circ, r2[1], l[3], vprobe[:+])
14 connect!(circ, r2[2], l[4], vprobe[:-])
15 fs=44100
16 model = DiscreteModel(circ, 1/fs)
17 u=5*sin(2pi*1000/fs*(0:fs-1)).’
18 y=run!(model, u)

Figure 6: Julia/ACME code for the circuit of Figure 3c.

function of Figure 2. Similarly, in lines 5 to 8, the driving voltage
source, the two resistors, and a voltage probe to obtain the output
voltage are created. The Circuit object created in line 9 holds
the circuit description and is populated in lines 10 to 14 by spec-
ifying how the circuit elements are connected. For example, the
positive terminal of the voltage source is connected to terminal 1
of resistor R1. The circuit description is converted to a runnable
model for a sampling rate of 44.1 kHz in lines 15 and 16 which
is then executed in line 18. The circuit is driven with a sinusoidal
voltage with an amplitude of 5 V, set up in line 17. For high fre-
quencies f , as shown in Figure 7a for f = 1 kHz, the circuit al-
most perfectly achieves the voltage scaling by n2/n1 = 1/10. On
the contrary, for lower frequencies like f = 100 Hz shown in Fig-
ure 7b, the saturation of the core yields a very non-linear behavior,
similar in shape to e.g. the results in [1].

6. CONCLUSIONS

We have presented an inductor/transformer model based on the
Jiles-Atherton model of magnetization. It foregoes the commonly
found gyrator-capacitor translation step to map magnetic to elec-
tric quantities. Instead, it exploits the possibilities of the employed
framework of [6] to have the magnetic field and the magnetization
as state variables. An implementation as part of the ACME pack-
age allows flexible use of the developed model for various circuits.
Simulations conducted with simple circuits prove that the model
exhibits the expected behavior. In the future, it will be interest-
ing to model a real output transformer and combine it with a tube
model to simulate a real guitar amplifier’s power stage.
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