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ABSTRACT

In the digital simulation of non-linear audio effect circuits, the aris-

ing non-linear equation system generally poses the main challenge

for a computationally cheap implementation. As the computational

complexity grows super-linearly with the number of equations, it is

beneficial to decompose the equation system into several smaller

systems, if possible. In this paper we therefore develop an approach

to determine such a decomposition automatically. We limit our-

selves to cases where an exact decomposition is possible, however,

and do not consider approximate decompositions.

1. INTRODUCTION

Digital emulation of analog circuits for musical audio processing,

like synthesizers, guitar effect pedals, or vintage amplifiers, is an

ongoing research topic. Various methods exist to derive a mathemat-

ical model for an analog circuit in a systematic hence automatable

way, most notably wave digital filters [1, 2, 3], port-Hamiltonian

approaches [4, 5], and state-space based approaches [6, 7]. In the

following, we will focus on the method of [7], as it has no limita-

tions concerning the circuit topology and is general enough to also

handle pathological circuits or element models (e.g. [8]). How-

ever, the underlying ideas should be equally applicable to the other

approaches.

The downside of such automated approaches, and of [7] in

particular, is that they often will lead to one large system of non-

linear equations, collected from all the circuit’s non-linear elements.

If possible, however, it is usually more efficient to solve many

small equation systems instead of a single large one. Typically, the

convergence of small systems will be better, allowing for a smaller

number of iterations in an iterative solver. And more tangible, the

complexity of solving the linear equation in e.g. the Newton method

scales with the square of the number of involved equations, so that

for a system of size N , the asymptotic complexity per iteration is

O(N2), while for N systems of size 1, it is O(N).

We therefore develop a method to decompose a non-linear equa-

tion system into smaller subsystems. We limit ourselves to the case

where this is possible without resorting to approximations, although

this unfortunately precludes the method from being applied to many

circuits of practical relevance, especially those with global feedback

paths. But while automatically deriving approximate decomposi-

tions, e.g. like those of [9, 10, 11], is beyond the scope of this

paper, we are confident it is still useful by itself and furthermore,

may form the basis for future methods to automatically find such

approximate decompositions.

2. MODEL DERIVATION METHOD

We shall first provide a short introduction into the method used to

obtain the circuit model and the non-linear equation in particular,

focusing on the example of Figure 1 (based on “Der Birdie”1), as

also discussed in [12], while the reader is referred to [7] for details.

First, the equations of the individual circuit elements are rewrit-

ten in a uniform way in terms of branch voltages and currents

and internal states. For example, a resistor with resistance R is

described as

vR +RiR = 0, (1)

where vR and iR are the voltage across and the current through the

resistor, respectively. The discrete-time model2 of a capacitor with

capacitance C is derived using bilinear transform as

(

C

0

)

vC(n)+

(

0
1

)

iC(n)−

(

1

2
1

T

)

xC(n) =

(

1

2

− 1

T

)

xC(n−1),

(2)

where T denotes the sampling interval and n the current time step,

vC and iC are again the voltage across and the current through

the capacitor, respectively, and the state xC corresponds to the

capacitor’s charge. Voltage sources are easily expressed using a

non-zero right-hand side, e.g. as

vVCC
+ 0 · iVCC

= 9V (3)

for the supply voltage source VCC, with a constant voltage vVCC
=

9V across it, driving an arbitrary current iVCC
.

The non-linear equation of non-linear elements is expressed

in terms of an auxiliary vector q, which is related to voltages and

currents (and potentially also states) through a linear equation.

Thus, a diode is expressed using the linear equation

(

1
0

)

vD(n) +

(

0
1

)

iD(n) +

(

−1 0
0 −1

)

qD(n) =

(

0
0

)

, (4)

fixing qD,1 = vD as the voltage across and qD,2 = iD as the

current through the diode, and the non-linear Shockley equation,

rewritten to implicit form as

fD(qD) = Is ·

(

e
qD,1
ηvT − 1

)

− qD,2 = 0, (5)

1http://diy.musikding.de/wp-content/uploads/

2013/06/birdieschalt.pdf
2In [7], the equations are first derived in the continuous-time domain

and then transformed to discrete time using the bilinear form. Equivilantly,
the bilinear transform may be applied per element, which we do here for
brevity’s sake.
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where Is, η, and vT denote, respectively, reverse saturation current,

emission coefficient (ideality factor), and thermal voltage. Similarly,

a transistor is expressed using the linear equation







1 0
0 1
0 0
0 0






vT (n) +







0 0
0 0
1 0
1 0






iT (n)

+







−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1






qT (n) =







0
0
0
0






, (6)

where vT and iT hold the voltages across and currents through the

base-emitter and base-collector branch in that order, respectively,

and the non-linear equation is obtained by rewriting the Ebers-Moll

equation to implicit form as

fT (qT ) =




IsE · (e
qT,1
ηEvT − 1)− βr

1+βr
IsC · (e

qT,2
ηCvT − 1)− qT,3

− βf

1+βf
IsE · (e

qT,1
ηEvT − 1) + IsC · (e

qT,2
ηCvT − 1)− qT,4





=

(

0
0

)

, (7)

where βf and βr denote forward and reverse current gain, respec-

tively, and the reverse saturation currents IsE and IsC and the emis-

sion coefficients ηE and ηC can differ between base-emitter and

base-collector junction.

Once the individual elements are modeled in a suitable form,

the circuit topology is taken into consideration by formulating the

Kirchhoff voltage law

Tvv = 0 (8)

and the Kirchhoff current law

Tii = 0, (9)

where v and i collect all the circuit’s branch voltages and cur-

rents, using matrices Tv of independent loop and Ti of independent

node (or cut-set) equations, which can be obtained by well-known

methods (see e.g. [13]). For the circuit of Figure 1 one e.g. finds

Tv =

VCC C5 D Vin R1 C1 R2 R3 TBE TBC R4 R5 C3 P1,1 P1,2









































1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0−1 1 0 0 0 0 0 0 0 0 0 0
0 0 0−1 0 1 1 0 0 0 0 0 0 0 0
1 0 0−1 0 1 0 1 0 0 0 0 0 0 0
0 0 0−1 0 1 0 0 1 0 1 0 0 0 0
1 0 0−1 0 1 0 0 0 1 0 1 0 0 0
0 0 0 1 0 −1 0 0 0 −1 0 0 −1 1 1

(10)
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Figure 1: Example treble booster circuit.

Table 1: Component/parameter values for the circuit of Figure 1.

comp. value

VCC 9 V
R1 1 MΩ
R2 43 kΩ
R3 430 kΩ
R4 390 Ω
R5 10 kΩ
P1 100 kΩ
C1 2.2 nF
C3 2.2 nF
C5 100 µF

comp. param. value

D Is 350 pA
D η 1.6
T IsE 64.53 fA
T IsC 154.1 fA
T ηE 1.06
T ηC 1.10
T βf 500
T βr 12

and

Ti =

VCC C5 D Vin R1 C1 R2 R3 TBE TBC R4 R5 C3 P1,1 P1,2

































1 −1−1 0 0 0 0 −1 0 0 0 −1 0 0 0
0 0 0 1 1 0 1 1 0 0 1 1 0 0 −1
0 0 0 0 0 1 −1−1 0 0 −1−1 0 0 1
0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 −1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1

.

(11)

Combining the element equations with the topology equations

yields the equation system





Mv Mi Mx’ Mq

Tv 0 0 0

0 Ti 0 0











v(n)
i(n)
x(n)
q(n)







=





Mx

0

0



x(n− 1) +





Mu

0

0



u(n) +





u0

0

0



 . (12)

The matrices Mv, Mi, Mx’, Mq, andMx, are constructed as block

diagonal matrices (with potentially rectangular blocks) from the re-

spective factors in the element equations, and x and q are obtained

by stacking the respective entries of the individual elements. For

the example circuit, the top left parts of the matrices, corresponding
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to VCC, C5, and D, e.g. are

Mv =



















1 0 0 · · ·
0 C5 0 · · ·
0 0 0 · · ·
0 0 1 · · ·
0 0 0 · · ·
...

...
...

. . .



















Mi =



















0 0 0 · · ·
0 0 0 · · ·
0 1 0 · · ·
0 0 0 · · ·
0 0 1 · · ·
...

...
...

. . .



















(13)

Mx’ =



















0 · · ·
− 1

2
· · ·

− 1

T
· · ·

0 · · ·
0 · · ·
...

. . .



















Mx =



















0 · · ·
1

2
· · ·

− 1

T
· · ·

0 · · ·
0 · · ·
...

. . .



















(14)

Mq =



















0 0 · · ·
0 0 · · ·
0 0 · · ·
−1 0 · · ·
0 −1 · · ·
...

...
. . .



















. (15)

The vector u0 holds constant source values, in this case a single

non-zero as first entry, namely VCC = 9V, while u(n) holds all

time-varying source values, i.e. the circuit inputs, in this case only

the input voltage vin(n), which is mapped to the appropriate row by

the matrix Mq, a one-column matrix in the example with a single 1
in the sixth row.

The matrix on the left-hand side of (12) has dimension 36×39,

hence the equation system is under-determined. However, we can

solve for a solution set







v(n)
i(n)
x(n)
q(n)






=







Dv

Di

A

Dq






x(n− 1) +







Ev

Ei

B

Eq






u(n) +







v0

i0
x0

q0







+







Fv

Fi

C

Fq






z(n), (16)

where the first three terms form a particular solution, while the

last term with a three-dimensional arbitrary vector z(n) spans

the solution set. Note that neither the particular solution nor the

basis of the nullspace to span the solution set are unique. In the

ACME framework3 that implements this method, an algorithm

based on [14] is used that exploits the sparsity of the matrices, and

the particular solution is further modified such that Dq and Eq are

orthogonal to Fq as motivated in [12].

In the following, the last row of (16) is of particular interest,

and we shall drop the time index n, i.e. we write

q = Dqx+Equ+ q0 + Fqz. (17)

In order to find z, the non-linear element equations need to be

3https://github.com/HSU-ANT/ACME.jl

considered, which are gathered to obtain

f(q) = f

((

qD

qT

))

=

(

fD(qD)
fT (qT )

)

=









Is ·
(

e
q1
ηvT − 1

)

− q2

IsE · (e
q3

ηEvT − 1)− βr

1+βr
IsC · (e

q4
ηCvT − 1)− q5

− βf

1+βf
IsE · (e

q3
ηEvT − 1) + IsC · (e

q4
ηCvT − 1)− q6









= 0.

(18)

Note that the number Nn = 3 of subequations is smaller than the

number Nq = 6 of entries in the vector q. Thus, this implicit

non-linear equation confines q to a solution manifold. On the other

hand, q is restricted to the affine subspace spanned by (17) for

arbitrary z. As z has exactly Nn = 3 entries, there is in general

a finite number of permissible z, and for physically meaningful

circuit schematics, there will be a unique solution. Once z is found,

it is used to calculate the circuit’s output (by extracting the desired

entry of v(n)) and update its states according to (16).

3. DECOMPOSITION METHOD

In general, the non-linear equation system is formed by collecting

subequations of the N individual non-linear elements contained in

the circuit as

f(q) =











f1(q1)
f2(q2)

...

fN (qN )











= 0 (19)

where q is likewise formed from subvectors as

q
T =

(

qT
1 qT

2 · · · qT
N

)

. (20)

Unfortunately, this does not mean that the subequations can be

solved individually, as we need to solve for z, not q or the individual

qn. In fact, it will only be possible in very benign cases to solve

the equations element-by-element. It is more likely that groups of

elements can be identified into which the non-linear equation can

be decomposed.

3.1. Decomposition assuming known grouping

Assume the non-linear equation system is split into M equation

groups f̃m(q̃m),m = 1, . . . ,M with M ≤ N . That is, each q̃m

and f̃m(q̃m) is the concatenation of one or more qn and fn(qn),
respectively. As the ordering of the elements in f(q) and q is

arbitrary, we may assume without loss of generality that

f
T (q) =

(

f̃T
1 (q̃1) · · · f̃T

M (q̃M )
)

(21)

and

q
T =

(

q̃T
1 · · · q̃T

M

)

. (22)

Let Dq,m, Eq,m, and Fq,m denote the corresponding rows of the

respective matrices and likewise q0,m the corresponding entries of

q0 so that

q̃m = Dq,mx+Eq,mu+ q0,m + Fq,mz. (23)

Further let z also be decomposed as

z
T =

(

zT
1 zT

2 · · · zT
M

)

(24)
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such that zm has as many entries as f̃m(q̃m) and let Fq,m,n denote

the corresponding columns of Fq,m, that is

Fq =







Fq,1,1 · · · Fq,1,M

...
. . .

...

Fq,M,1 · · · Fq,M,M






(25)

such that

q̃m = Dq,mx+Eq,mu+ q0,m +Fq,m,1z1 + · · ·+Fq,m,MzM .

(26)

Now, let the element groups be chosen such that Fq,m,n = 0

for n > m. Then

q̃1 = Dq,1x+Eq,1u+ q0,1 + Fq,1,1z1 (27)

so that z1 can be obtained by solving f̃1(q̃1) = 0. With z1 known,

z2 can then be obtained by solving f̃2(q̃2) = 0 and so forth up

to M . Thus, if Fq is such that a partitioning with Fq,m,n = 0 for

n > m (and M > 1) exists, we can decompose the non-linear

equation into individually solvable subequations, where in general,

the m-th subequation depends on the solution of the m−1 previous

subequations.

Of course, we may rarely be lucky and find Fq to be suitable

for this decomposition. However, [7] leaves some freedom in the

exact choice of the coefficient matrices. In particular, only the space

spanned by Fqz is of importance, which does not change if we

substitute Fq ← FqR for a regular matrix R. (This will, of course,

change the resulting z, so Fv, Fi, and C have to be updated in the

same way.) Now, finding an R such that the upper right subblocks

of Fq become zero is similar to bringing F T
q into upper triangular

form, but with respect to the rectangular subblocks Fq,m,n. Thus if

the chosen decomposition into subequation groups allows a suitable

choice of Fq, it can be found using standard tools of linear algebra,

e.g. Gaussian elimination.

3.2. Identification of a suitable grouping

The remaining question is how to determine a suitable grouping. If

fq and q were ordered in correspondence with the yet-to-be-found

grouping, i.e. fulfilling (21) and (22), we could just determine R to

eliminate the maximum number of elements in the upper right part

of Fq and examine the zero-structure thus obtained. Unfortunately,

the number of possible permutations of the entries in fq and q grows

too fast with N to make trying all of them feasible. E.g. for N = 10
non-linear elements, we would need to examine N ! = 3 628 800
permutations.

We can do a little better than that by greedily trying to sepa-

rate a single subgroup by trying all 2N − 1 non-empty subsets of

{1, . . . , N} in order of increasing cardinality. Once the smallest

permissible subgroup has been identified, i.e. one for which Fq

can be transformed in a suitable way when that subgroup is placed

first in fq and q, the process is repeated for the remaining elements.

In the worst case, if the circuit does not allow decomposition, all

2N − 1 non-empty subsets have to be tried. Otherwise, the num-

ber of trials in the first iteration is lower, but additional trials are

needed for the remaining non-linear elements. Nevertheless, it can

be seen that the complete procedure never has to try more than

2N − 1 subgroupings. This is still an exponential growth with

N , but in the realm of audio effect circuits where a number N of

non-linear elements in the low two-digit range is already considered

quite complex, the needed computational time during the offline

pre-computation step may be well acceptable. E.g. for the N = 10
case, at most 1023 trials would be needed.

3.3. Dimensionality reduction of the input vector

After the decomposition, we can obtain zm from f̃m(q̃m) = 0,

which depends on x, u, and z1, . . . , zm−1, a potentially high num-

ber of input values. This would pose a major problem if one would

like to tabulate precomputed values in a look-up table. However,

the method proposed in [12] can be easily extended to not only

treat x and u as inputs, but also z1, . . . , zm−1, to find an index

vector pm of minimal dimension that can be used as input.

The idea is to apply a rank factorization to the matrix

(

Dq,m Eq,m Fq,m,1 · · · Fq,m,m−1

)

= Qm ·
(

D̂q,m Êq,m F̂q,m,1 · · · F̂q,m,m−1

)

(28)

such that
(

D̂q,m Êq,m F̂q,m,1 · · · F̂q,m,m−1

)

has mini-

mal number of rows. Then

pm = D̂q,mx+Êq,mu+F̂q,m,1z1+· · ·+F̂q,m,m−1zm−1 (29)

is the index vector of minimal dimension to be used in

q̃m = q0,m +Qmpm + Fq,m,mzm. (30)

4. EXAMPLES

4.1. Treble booster

As a first, relatively trivial example, we consider the treble booster

circuit of Figure 1 with the component values given in Table 1. The

circuit contains two non-linear elements, a diode and a transistor.

But note that the formers sole purpose is to protect the circuit

against connecting the power supply with wrong polarity. Usually,

one would omit the diode from the simulation as it has no influence

on the output signal. Here, we include it to verify that we can then

eliminate it algorithmically.

We choose to put the diode first, so that q1 has two elements

and f1(q1) has one (see (5)), and q2 has four elements and f2(q2)
has two (see (7)). Using the ACME implementation of [7], we find

Fq =















0 0 0
1 0 0
0 1 0
0 0 1
0 −2.917× 10−4 9.705× 10−5

0 9.705× 10−5 −1.054× 10−4















}

D1











T1

(31)

where the lines demark the decomposition according to (25).

Apparently, Fq,1,2 = 0 without any further modifications,

and we can determine z1 from the diode equation alone. In this

particular case, we do not even need z1 to determine z2, as also

Fq,2,1 = 0, so we could just as well have put the diode second.

Using the method of [12] to determine index vectors pm of

minimal dimension, we find p2 has two entries, while p1 has no

entries at all. Thus, f1(q1) and hence also z1 do not depend

on values changing during simulation and can therefore be pre-

computed offline.

To evaluate the performance impact, a guitar signal of 33.6 s
duration sampled at 44.1 kHz is processed with the help of ACME
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Figure 2: Example overdrive circuit.

v0.4.1 and the required processing time is measured using Julia

v0.6.0 on an Intel Xeon E5-1620v2 CPU at 3.7GHz. The non-

linear equation is solved using Newton’s method, where the initial

solution is determined by extrapolating from the previous time

step’s solution using linearization (see [12] for details). No further

pre-computing/caching of solutions is employed. As the circuit

introduces relatively little distortion, only 1.789 iterations are re-

quired on average to refine the initial solution. While the original

model needs 2.45 s to run, the decomposed one reduces the time to

1.99 s, an improvement by 19%.

4.2. Overdrive

As a second example, we consider the more complex overdrive

circuit of Figure 2 (based on “Der Super Over”4). Again, there

is a diode anti-parallel to the supply voltage source as shown in

Figure 3a which we include in the model. However, we simplify

the bias voltage Vb generation; while the original circuit contains a

voltage divider and a stabilizing capacitor (see Figure 3b), we en-

force a constant bias voltage by directly connecting an ideal voltage

source (see Figure 3c). We assume the operational amplifiers ideal,

leading to a model with six non-linear elements: the protective

diode anti-parallel to the supply voltage, three diodes in the feed-

back around the first operational amplifier, and two transistors. The

non-linear equation system f(q) = 0 therefore comprises eight

equations (one per diode, two per transistor), while vector q has 16

entries (two per diode, four per transistor).

We again choose to put the protective diode first, then proceed

4http://diy.musikding.de/wp-content/uploads/

2013/06/superoverschalt.pdf

9V D4 100 µF

Vcc

(a)

33 kΩ

33kΩ100 µF

Vcc

Vb

(b)

4.5V

Vb

(c)

Figure 3: Power supply circuitry omitted from Figure 2 for (a) main

supply voltage, (b) bias voltage, (c) simplified bias voltage.

left to right, and the ACME implementation of [7] yields

Fq =























































0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 ∗ ∗ 0 0 0 0 0
0 ∗ ∗ 0 0 0 0 0
0 0 0 −1 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 ∗ ∗ ∗ 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 ∗ ∗
0 ∗ ∗ ∗ 0 0 ∗ ∗























































}

D4











Q1

}

D2

}

D1

}

D3











Q2

(32)

where ∗ denotes non-zero entries whose exact values depend on

the potentiometer settings. It can be observed that the first diode
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can again be extracted without problems. Continuing by just con-

sidering the remaining matrix, the first transistor can likewise be

extracted without the need to modify Fq. Now looking at the re-

maining submatrix































−1 −1 0 0 0
0 0 1 0 0
1 0 0 0 0
∗ 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 ∗ ∗
∗ 0 0 ∗ ∗































}

D2

}

D1

}

D3











Q2

for the three diodes and the second transistor, none of the three

diodes can be extracted by itself. Each of the three row pairs

belonging to the three diodes obviously forms a matrix of rank 2,

so we cannot possibly find a regular matrix with which to multiply

from the right to zero out all but one of the columns. Likewise,

the four lowest rows, belonging to the transistor, obviously form a

rank-3 matrix, from which we cannot cancel all but two columns.

As no single element can be extracted, the next thing to try is to

extract pairs of elements. Again, none of the six possible pairs

turn out to be extractable. But continuing with groups of three,

the three diodes can be extracted as one group, without requiring

modifications of Fq.

We thus arrive at the decomposition

Fq =























































0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 ∗ ∗ 0 0 0 0 0
0 ∗ ∗ 0 0 0 0 0
0 0 0 −1 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 ∗ ∗ ∗ 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 ∗ ∗
0 ∗ ∗ ∗ 0 0 ∗ ∗























































}

D4











Q1

}

D2

}

D1

}

D3











Q2

, (33)

comprising four subsystems of one, two, three, and two equations,

respectively. Unlike the first example, the sub-diagonal blocks

do contain non-zero entries, so the solution of earlier equations

is required for the later ones (with the exception of the protective

diode). Looking at the index vectors obtained with the method

of [12], p1 again has no entries, so the solution to f̃1(q̃1) = 0

can be pre-computed off-line. Furthermore, p2 and p4 both have

two entries and p3 just one, greatly simplifying the construction of

lookup tables compared to a p with five entries for the original (not

decomposed) system.

Performing the same performance evaluation as for the treble

booster example above, the processing time of the original model

is determined as 6.82 s with 2.965 Newton iterations needed on

average per sample. Decomposing the model reduces the number

of iterations needed to 1.460, 2.924 and 1.696 for the three sub-

equations, respectively. The needed processing time however is

reduced insignificantly to 6.79 s. Nevertheless, the advantage of

making lookup tables feasible remains.

Unfortunately, the obtained results depend on the simplifica-

tion of fixing the bias voltage Vb. With the original circuitry, all

nodes connected to Vb influence each other, effectively creating a

global feedback path, and the only decomposition possible is the

extraction of the protective diode of the main power supply. In

terms of the Fq matrix, this manifests itself in additional entries in

the fourth and last column that cannot be canceled and preclude

further decomposition.

5. IMPLEMENTATION ASPECTS

The proposed method has been implemented as part of the ACME

framework. One of the main challenges encountered is the condi-

tion Fq,m,n = 0 which, when using floating point arithmetic, will

usually only be fulfilled approximately. The obvious approach then

is to treat entries with very small absolute value as zero. However,

determining an appropriate threshold proves to be anything but triv-

ial, as the scale of the entries in both q and z can differ by orders of

magnitude from each other. So instead, we employ exact arithmetic,

using rationals of arbitrary precision integers. This is possible as

the whole model derivation process only needs a bounded number

of additions, subtractions, multiplications, and divisions, so that

the numerators and denominators may grow very large, but are

still bounded. Of course, for the simulation itself, the values are

converted to floating point for efficiency.

Unfortunately, the benefits reaped from the decomposition in

terms of run-time turn out to be smaller than expected; sometimes,

the decomposed model may even run slightly slower than the orig-

inal one. The reason seems to be constant overhead that may

dominate over the asymptotic behavior for small problem sizes. In

an earlier implementation, where LAPACK routines were used for

linear equation solving, this effect was even more pronounced. The

constant calling overhead for the LAPACK routines is significant:

Solving a system of size eight takes less than five times as long

as solving a system of size one. We hope for a future, optimized

implementation to further reduce these overheads, however.

6. CONCLUSION

The proposed method is able to decompose a system of non-linear

equations into a number of smaller subsystems if that is possible

in an exact way. This may lead to more efficient simulations in

terms of computational load (when using iterative solvers) or mem-

ory requirements (when using lookup tables). However, the time

needed to find this decomposition during model creation grows

exponentially with the number of non-linear circuit elements. For-

tunately, typically modeled audio effect circuits do not contain

enough non-linear elements to make the approach infeasible.

The present paper does not, however, tackle the more challeng-

ing problem of automatically finding an approximate decomposi-

tion, which may either give a solution of sufficient accuracy for the

complete system directly, or could at least be used to find a good

initial solution for an iterative solver then applied to the complete

system. We hope this paper to be a valuable step in that direction,

however. E.g. for the overdrive circuit, numerical analysis could re-

veal that the bias voltage is almost constant, and that in fact fixing it

at a constant does not change the output in a significant way. Based
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on that, the proposed method could be applied as exemplified in

Sec. 4.2.
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