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ABSTRACT

In this study, receiver-based audio error concealment in the context

of low-latency Audio over IP transmission is analyzed. Therefore,

the well-known technique of audio extrapolation is investigated

concerning its usability in real-time scenarios, its applied predic-

tion techniques and various transmission parameters. A large-scale

automated evaluation with PEAQ and a MUSHRA listening test

reveal the performance of the various extrapolation setups. The

results show the suitability of extrapolation to perform audio error

concealment in real-time and the qualitative superiority of block

based methods over sample based methods.

1. INTRODUCTION

The internet is increasingly utilized as the transport framework for

nowadays communication. The common technique for the trans-

mission of speech, Voice over IP (VoIP), has been used for about

20 years and replaced analog as well as ISDN telephony exten-

sively. Also the spreading of musical content, called Audio over IP

(AoIP), has been well-established. However, this trend mainly ap-

plies for broadcast scenarios but not for low-latency, bidirectional

communication, which shall be the use case in the following.

To allow the transmission of continuous, analog signals it is

necessary to convert the signal into a digital representation, frag-

ment it into blocks, and encapsulate it into an IP packet. There-

after, the actual transport over the IP network can occur before a

receiver can extract the audio segment from the packet, and convert

it to the analogue domain again for the purpose of replaying it. All

these steps introduce a certain amount of delay, conflicting with

the requirement of low latency in many AoIP applications. Espe-

cially, interactive scenarios like distributed musical performances

[1, 2, 3, 4], which require very low latency, seem to be difficult to

realize. Besides various system approaches, many specific prob-

lems of IP based musical interaction such as issues related to trans-

mission delay [5] or the necessity of audio device synchronization

has been analyzed [6]. Also, the severe problem of error conceal-

ment in case of packet loss due to non-optimum network condi-

tions has been investigated [7, 8]. Simplest concealment schemes

like block interpolation, repetition, silencing or noise substitution

are known to perform only with a moderate quality. Techniques

considering the actual signal and resynthesizing it are hence more

promising. Possible systems are sinusoidal analysis/synthesis [9],

adapted waveform similarity overlap-add [10], and model-based

variants. In this study, Kauppinen’s [11] approach of audio extrap-

olation, based on auto-regressive modeling, is used to substitute

missing audio fragments. The quality of the concealment mainly

depends on the used signal model, obtained with prediction. The

focus of this survey lies on the exact evaluation of the prediction
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Figure 1: Extrapolation of a missing audio fragment

scheme’s influence on the audio quality, considering its algorith-

mic complexity and usability in an AoIP scenario. Section 2 recaps

Kauppinen’s audio signal extrapolation algorithm and the applica-

tion in an AoIP scenario whereas section 3 introduces different

prediction techniques. The setup of the undertaken experiments

and the corresponding results are explained in section 4. Section 5

depicts one way of integrating the analyzed concealment scheme

into an existing AoIP framework. The summarized findings and

further conclusive thoughts are pointed out in section 6.

2. AUDIO SIGNAL EXTRAPOLATION

In the context of audio signals, extrapolation describes the process

of extending a sequence of samples with estimated values x̂[n].
This estimation is based on a previously determined model of the

process which created the known signal parts x[n]. The quality

of the estimated sequence essentially relies on the correctness of

the model. The extrapolation result itself can be described as the

superposition of previous weighted system output values and the

current input value x[n], characterizing this kind of model as an

autoregressive model (AR), given by

y[n] =
1

a0
(a1y[n− 1] + · · ·+ apy[n− p]) + x[n] =

=
1

a0

(

p
∑

i=1

aiy[n− p]

)

+ x[n] , (1)

where ai are the AR parameters and p describes the order of the

model. This difference equation can be z-transformed to obtain the

following transfer function

H(z) =
1

p
∑

i=0

aiz−i

. (2)
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Figure 2: Transposed direct form II implementation of purely re-

cursive filter: Extrapolation (a) and initialization (b) mode

Apparently, Eq. (2) also represents the transfer function of a purely

recursive infinite impulse response (IIR) filter. Therefore, audio

signal extrapolation can be implemented with a single recursive

filter using AR parameters ai as filter coefficients. Since the pur-

pose of extrapolation is to prolong a sequence x[n] the input of the

recursive extrapolation filter is expected to be zero

x[n0], . . . , x[n0 + s− 1] = 0, (3)

assuming the extrapolation process starts at sample n0 and is ap-

plied for s samples. Obviously a recursive filter of length L, il-

lustrated in Fig. 2a, can’t emit non-zero output without excitation

or prior output values y[n0 − 1], . . . , y[n0 − L]. Therefore, a

proper filter initialization is essential. The initialization is depend-

ing on the used filter structure. For the case of non-transposed

direct form filter implementations the copying of the last known

samples in reverse order x[n0 − 1], . . . , x[n0 − L] directly into

the states Z1, . . . , ZL−1 is sufficient. The implementation consid-

ered in the following is based on transposed direct form II filters,

as shown in Fig. 2a. The filter states are affected by input x[n]
already weighted with filter coefficients in this filter realization.

Hence, the initialization can be achieved by feeding the last known

samples x[n0 − L], . . . , x[n0 − 1] directly in the feedback path

and weighting them with AR parameters ai as filter coefficients

caL−1, . . . , c
a
1 , like illustrated in Fig. 2b.

With respect to AoIP transmission extrapolation can be used

to compensate faulty or missing audio material caused by adverse

network conditions, as demonstrated in Fig. 1. The solid line

shows the waveform of a clarinet tone, segmented in 4 frames. As-

suming the third frame (sample 512 to 767) is corrupted or miss-

ing completely, audio extrapolation can be used to approximate a

waveform (dotted line) similar to the lost one. For that purpose,

the M lastly received audio frames can be used to compute the

signal model. The lastly received audio frames xm−1 to xm−M

are fed into a receiver buffer of size M used by the extrapolation

module as shown in Fig. 3. If a network packet xm has not arrived

in time, the extrapolated audio frame x̂m can be used. To allow

the application of x̂m it has to be computed in advance during the

playback of frame xm−1. To guarantee smooth transitions to the

next intact frame it is recommended to extrapolate sequences that

xm−1, . . . ,xm−M

xm

x̂m

Buffer Extrapolation

Figure 3: Basic error concealment strategy

are longer than a single audio frame size and apply a cross-fade

with the next audio packet.

The following section explains various approaches to obtain

the mentioned model parameters ai with the help of prediction.

3. PREDICTION TECHNIQUES

For the purpose of estimating an unknown future signal value of a

given time series x[n] linear prediction is typically applied. The

predicted value x̂[n] is computed with the last known samples

x[n − 1], x[n − 2], . . . , x[n − p] and p predictor coefficients ai

as given by

x̂[n] =

p
∑

i=1

aix[n− i] . (4)

The accuracy of the estimation using a predictor of order p can be

assessed with the forward prediction error ep[n], also known as

the residual

e[n] = x[n]− x̂[n] . (5)

The coefficients ai should be chosen to achieve the minimum pre-

diction error energy e[n]2. Predictors can be implemented in sev-

eral ways. In the following we classify different approaches in

sample-based and block-based variants. Formulas and the pseudo

code, used to compute the algorithmic complexity, are mainly based

on [12].

3.1. Sample Based Approaches

3.1.1. Direct Form

The minimization of the prediction error energy can be achieved

with the method of steepest descent. The expected value of the in-

stantaneous prediction error energy is defined as the cost function

J = E{e2[n]}, which depends on the set of prediction coefficients

ai[n]. Those p coefficients

ai[n+ 1] = ai[n]−
1

2
µ

∂J

∂ai[n]
, i = 1, ..., p. (6)

are adapted by subtracting the negative derivative of this cost func-

tion, which is additionally weighted with the fixed step size µ

2
.

Applying the instantaneous error energy as the cost function

J = e2[n] and solving the derivative leads to

ai[n+ 1] = ai[n] + µ e[n] x[n− i], i = 1, ..., p. (7)

Since the updated coefficient ai[n + 1] depends on the cost func-

tion, describing the squared error, this algorithm is called Least
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Mean Squares (LMS). A practical rule to guarantee the conver-

gence of LMS is to choose µ between

0 < µ <
2

p
∑

i=1

x2[n− i]

, (8)

where the numerator can be stated as the "tap-input power" [13].

Eq. (8) can also be computed continuously, leading to time-variant

µ[n]. This modification is called Power Normalized LMS (PNLMS)

[14]. In addition to the well-known direct filter structure (Fig. 2),

the sample-based prediction with lattice filters shall be shown in

the next section.

3.1.2. Lattice Form

The lattice filter structure, illustrated in Fig. 4, contains a forward

and backward branch with the corresponding forward and back-

ward errors fi[n] and bi[n]. These errors can be recursively com-

puted in the following way

fi[n] = fi−1[n]− ki bi−1[n− 1] (9)

bi[n] = bi−1[n− 1]− ki fi−1[n], i = 1, ..., p,

where ki are the so-called reflection coefficients comparable to the

filter coefficients ai of the direct form filter. The prediction error is

minimized in every lattice stage. Therefore, the initial prediction

errors are the input signal

f0[n] = b0[n] = x[n]. (10)

Similar to the direct form filters, the method of steepest descent is

applied

ki[n+ 1] = ki[n]−
1

2
µi[n]

∂Ĵi

∂ki[n]
, i = 1, ..., p. (11)

Applying a modified cost function, describing the prediction error

energy in ith lattice stage, Ĵi = f2
i [n] + b2i [n] yields

ki[n+ 1] = ki[n] + µi[n] (fi[n] bi−1[n− 1] + bi[n] fi−1[n]) .
(12)

Similar to PNLMS, the state-dependent gradient weight can

be replaced with a power normalized µi[n] =
α

σ2

i
[n]

, where α is

a scaling factor and σ2
i [n] is the prediction error energy in the ith

lattice stage. It can be computed recursively like

σ
2
i [n] = λσ

2
i [n−1]+(1−λ) (f2

i−1[n−1]+b
2
i−1[n−1]), (13)

where λ describes an attenuation factor controlling the influence

of past values. This implementation of a predictor is called Gradi-

ent Adaptive Lattice (GAL). A noticeable advantage of GAL over

LMS is the guaranteed stability for |ki| < 1 and its fast conver-

gence due to stage-dependent gradient weights µi[k]. Addition-

ally, it should be pointed out that the error is minimized using the

forward and backward prediction error.

3.2. Block Based Approaches

The finding of optimal prediction coefficients for a block of length

N requires the minimization of the prediction error using the whole

block. Two common methods are presented in the following.

z−1z−1

x[n]

y[n]

−k1

−k1 −kp

f0[n] f1[n] fp[n]

b0[n] b1[n]

Figure 4: Lattice filter implementation

3.2.1. Autocorrelation-based

A main idea of the autocorrelation method (ACM) is to consider

values outside the currently analyzed block to be zero by operating

on a windowed block u[n] = w[n] x[n]. The prediction error

energy of order p for this block can be described as

E =

N+p−1
∑

n=0

e
2[n], (14)

where the error e[n] can be expressed with Eq. (4) and (5). The

actual minimization of E is achieved by setting its derivative with

respect to the desired prediction coefficients ai to zero

∂E

∂ai

!
= 0. (15)

Substituting (14) in (15) yields after several manipulations (see

[13])
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(16)

where r(i) are the autocorrelation coefficients, corresponding to

u[k], computed like

r(i) =
1

N

N−1
∑

l=i

u[l]u[l − i]. (17)

These so-called Wiener-Hopf equations can be efficiently solved

with the well-known Levinson-Durbin algorithm [15].

3.2.2. Burg Method

Global optimization within a block to compute an optimal set of

model parameters can also be achieved with lattice filters. For that

purpose, the sum of forward and backward error energy over all p

lattice stages Ji =
N−1
∑

n=i

(

f2
i [n] + b2i [n]

)

is minimized in the same

manner as for ACM. Therefore, the derivative of Ji with respect to

ki is set to zero and solved for ki, yielding

ki =

2
N−1
∑

n=i

(fi−1[n] bi−1[n− 1])

N−1
∑

n=i

(

f2
i−1[n] + b2i−1[n− 1]

)

. (18)

This so-called "Burg formula" can recursively be used to compute

the reflection coefficients ki for all i = 1, . . . , p. After every com-

putation of ki all lattice stages have to be updated with the new

reflection coefficients according to Eq. (9).
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Table 1: MUL’s and ADD’s of the proposed prediction algorithms

MUL ADD

LMS 3p+ 2 3p+ 1

GAL 10p 7p

ACM p+ p2+5p+4N+2
2N

p+ p2−3p+2N−2
2N

Burg 5p− 5p2+p

2N
5p− 5p2+9p

2N
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100
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104
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Figure 5: Computational complexity in instructions per sample

3.2.3. Complexity

The overall design of the desired AoIP system must consider the

complexity of all involved modules. To evaluate the algorithmic

complexity of the proposed predictors, the required instructions in

the corresponding formulas were counted. The amount of opera-

tions for the instantaneously computed block-based methods was

divided by N to be able to compare the averaged complexity per

sample. Note, that divisions were treated like multiplications. Ta-

ble 1 illustrates the amount of multiplications and additions per

sample for the proposed predictors depending on the prediction

order p. Plotting the overall sum of necessary operations over p
and a fixed block length N = 128 reveals (see Fig. 5) that ACM is

the cheapest method, exceeded by the similarly expensive PNLMS

and Burg. Due to its expensive recursion, GAL is the most expen-

sive of the analyzed predictors.

Implementing ACM and Burg on DSP-platforms, restricted to

a certain amount of operations per sample, is not directly possi-

ble due to their unbalanced work load. A way of load balanc-

ing the necessary computations is shown in [12]. The unbalanced

work load of the block-based methods is not an issue in most

AoIP implementations since the audio data is fragmented in frames

anyways and existing AoIP systems were implemented on plat-

forms allowing the use of multi-threading for the purpose of load-

balancing.

4. EXPERIMENTS

The proposed prediction schemes were extensively evaluated, fol-

lowing objective and subjective criteria. The measurement method

and the listening test setup are explained in this section.

4.1. Measurements

The evaluation of audio quality with software tools instead of real

listeners has always been a controversially discussed topic. Nev-

ertheless, the psychoacoustically motivated Perceptual Evaluation

Table 2: Used parameters in the evaluation with PEAQ

Parameter Minimum Increment Maximum

Packet Loss Rate 0.01 0.01 0.1

Block Length 64 2n+1 512

Prediction Order 1 2i+1 Block Length

of Audio Quality (PEAQ) [16] method is a widely-used measure-

ment tool. It has to be fed with the signal under test and a reference

signal. Multiple features like the noise-to-mask-ratio are computed

within PEAQ to obtain an estimate for the perceptual quality of the

signal under test. This estimate is expressed in the form of the so-

called objective difference grade (ODG) score. This score reaches

from −4, meaning very annoying, to 0, indicating an impercepti-

ble difference between signal under test and reference. Although,

the typical application of PEAQ is to assess the audio quality of

lossy audio codecs, which introduce different artifacts than the an-

alyzed extrapolation scheme, the authors assume that PEAQ is at

least a suitable quality indicator for error concealment.

The evaluation is implemented in Matlab as described below.

A test item is loaded into the workspace and once copied as a ref-

erence. Then the test item is divided into frames of a fixed length

and a fraction of those frames is deleted to imitate physical packet

loss. Afterwards, the test item is processed frame-wise. When-

ever an empty frame was detected, the M = 3 last frames were

fed to the four proposed predictors and the extrapolation was com-

puted with obtained model parameters ai. The extrapolated block

of length 3
2
N is cross faded into the next frame to avoid discon-

tinuities at the block edges. After completion of the test item the

reference, an unconcealed error reference and the four concealed

versions are written to wave files.

Finally, a self-implemented PEAQ tool is fed with a concealed

version and the reference of the test item to obtain an ODG score.

This procedure is repeated for various simulation parameters, listed

in Table 2, and the complete SQAM [17] data set, which consists

of various synthetic test signals, high-quality recordings of single

instruments, speech and full mixes. The results are explained in

the following section.

4.2. Results

First of all it shall be shown that extrapolation of audio data is

highly signal-dependent in general. Figure 6 shows the ODG score

for the various predictor schemes from Sec. 3 and an unprocessed

error reference against every test item of the SQAM data set. The

simulation parameters for this plot were a fixed block length as

well as a prediction order of 128 and a packet loss rate of 0.01.

Regarding Fig. 6 leads to an estimate for the following order of

quality: Burg, ACM, GAL, PNLMS.

The mean ODG score of the error reference µErr = −2.33
clearly characterizes the unconcealed audio material as annoyingly

defective. It is noticeable that there is a large variance σ2
Err =

1.98 in the error reference, indicating that the impact of the in-

troduced error is highly signal-dependent. Certain test items seem

to be nearly unaffected by the packet loss simulation. However,

this effect can be explained by analyzing the actual test items and

the rating criteria of PEAQ. For example, items 26 − 28, 36 are

recordings of instruments with a percussive characteristic with a

very fast decay like castanets or a harpsichord. These items con-
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Figure 6: ODG score over SQAM test files
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Figure 7: ODG score over various simulation parameters

tain much silence, increasing the probability of having the simu-

lated packet loss within a silent section causing no audible artifact.

Test items 44 − 54 are speaking and singing voice examples, also

featuring many calm passages. The SQAM data set includes some

recordings consisting of many sound sources like orchestras or full

mixes. The authors assume that PEAQ rates artifacts due to the

packet loss less severe for wide-band signals than for narrow-band

signal. The simulation of simultaneous and temporal masking ef-

fects within the PEAQ tool seem to be reasonable explanations.

Indeed, artifacts in polyphonic sound material are known to be less

noticeable than in monophonic material.

The mean and variance of the ODG scores decrease drastically

when extrapolation is applied. The Burg-processed files only fea-

ture a variance of σ2
Burg = 0.32 for instance. Both block-based

methods deliver good results of µACM = −0.74 and µBurg =
−0.44 on average. Test items 3-7, which are synthetic test sig-

nals with a very fast amplitude modulation, seem to be very prob-

lematic for all predictors. The sample-based prediction schemes,

especially the lattice predictor, still produce acceptable averaged

results of µPNLMS = −1.38 and µGAL = −0.75. Nevertheless,

the performance of the Burg predictor can not be achieved for most

test items. In general, the lattice based predictors outperform the

direct form predictors in almost every case. This is likely caused

by the lattice predictor’s property of minimizing the forward and

backward prediction error and therefore, creating a more conve-

nient signal model.

The influence of the used block length on the prediction per-

formance is illustrated in Fig. 7a, where the ODG score, averaged

over all SQAM test items, is plotted against it. As expected, an

increased block length increases the prediction performance. In

other words, a prolonged input sequence leads to a better model for

the current signal. The sample-based methods seem to benefit even

more from the increased input signal length since the correspond-

ing curves are steeper, and therefore the relative improvement is

larger, although the performance of the block-based methods are

not reached.

The impact of the packet loss rate appears to be comparable for

the analyzed prediction schemes. The curves in Fig. 7b, illustrating

the ODG score for different packet loss rates, develop similarly.

Certainly, the curves are clearly shifted depending on the already

stated trend of quality. For instance, the scores for the Burg method

are offset by about 0.5 against the GAL scores.

The ODG score gain achieved by increasing the prediction or-
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der is visualized in Fig. 7c. The Burg predictor seems to benefit

most from a higher prediction order. Its curve shows a relative

raise of 1, whereas the other predictors only improve by about 0.5.

4.3. Listening Test

Since the evaluation should respect subjective criteria as well, a

simple MUSHRA [18] listening test was set up. Five items of the

SQAM test set with different kinds of sound sources and charac-

teristics were chosen: a cello, wind ensemble, male speech, vibra-

phone and a full mix. These test tracks were shortened to 10 sec-

onds and processed like the tracks for the PEAQ measurements.

The simulation parameters were set to a packet loss rate of 0.02,

block length of 128, prediction order of 32, cross-fade with a co-

sine window over half a block. The small block length was chosen

corresponding to simulate an AoIP system with a desirably small

blocking delay, whereas the error rate was selected high to create a

problematic network scenario, where error concealment is becom-

ing essential.

The listening test was performed with mushraJS [19], a browser-

based MUSHRA test tool, to easily reach many listeners. The 23
participants for this test were manifold. Researchers, audio pro-

fessionals, musicians as well as unexperienced listeners took part.

Five listeners produced irrelevant results, containing poorly rated

hidden references for instance, that were excluded from the result

set. The results per track, averaged over the listeners, are shown in

Fig. 8. To begin with, the measured trend of quality is confirmed,

revealing that the objective test with PEAQ was meaningful. There

are no significant peculiarities for a single test track but the signal-

dependency of the perceived error in the unprocessed material as

well as the extrapolation quality is again observable.

For instance, the Burg predictor was rated µ = 72.7 of 100
with a small standard deviation of σ = 11.6 for the vibraphone

example, indicating that the listeners perceived the quality of the

extrapolated track as acceptable without much uncertainty. In con-

trast, the cello track was only rated µ = 51.2 with a clearly larger

standard deviation of σ = 17.01. Hence, a larger disagreement of

the listeners concerning the signal quality exists.

The small mean and standard deviation values of the error ref-

erence for the cello and the speech track of µ = 11.0, 14.0 and

σ = 8.88, 10.72 respectively, demonstrates that the majority of

the listeners perceived the artifacts in this narrow-band content as

very annoying. The corresponding results for the vibraphone and

the Abba track of µ = 22.4, 25.2 and σ = 15.4, 17.6 are clearly

elevated. This again proves the reduced sensitivity to audible ar-

tifacts in wide-band audio material, as already pointed out in the

previous section.

The most outstanding discrepancy between the objective mea-

surements and the subjective listening test results is the superiority

of the Burg method. A closer look on Fig. 6 and Fig. 8 reveals

that the Burg method achieved a clearly larger relative advantage

over ACM in the averaged listening test result than in the averaged

PEAQ measurements.

5. INCLUSION IN AOIP FRAMEWORK

To test the real-time capability of the extrapolation with the most

promising prediction scheme - the Burg method - the correspond-

ing MATLAB code was ported to C/C++ and integrated in an al-

ready existent, proprietary AoiP system. The client of this AoIP

software allows sending to and receiving from multiple other clients.
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AoIP
Packet
Arrived

Store
Frame in
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Buffer

Perform
Conceal-
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Concealed

Frame
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Data For
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Apply
Fading

no
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no
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Figure 9: Flow chart of concealment mechanism in AoIP software

It consists of several classes to handle the internal functionalities

like audio, network, receiver buffers, and the front-end allowing

easy control.

The actual concealment process in the software is illustrated in

Fig. 9. Whenever an intact AoIP packet arrives at one of the UDP

sockets, which is bound to a specific sender of another client, it is

written to a free slot in the corresponding receiver buffer (marked

in dark gray). The entire or just a fraction of the receiver buffer

can then be used to perform the actual concealment using the tech-

niques described above. The result is stored in a separate buffer

(shaded dark gray). Note, that the extrapolated audio frame is

longer than the actual audio frames of size N . For this imple-

mentation, the overlap was chosen to be half the block length

NOL = 1
2
N .

Every time the audio core gets activated, and the audio pro-

cessing callback is triggered, a stereo mix of the current audio

frames of all receivers is written to the output buffer of the sound

card. Therefore, the audio core requests data from all receiver

buffers. If a receiver buffer does not contain new data, it will return

the last concealed audio frame truncated to length of N . When new

data is available but the last returned block of data was concealed,

it is necessary to perform a cross-fade between the current received

frame and the extended fraction of the last concealed frame for

NOL samples. This is required to allow smooth transitions be-

tween regular and concealed frames, resulting in glitch-free audio.

In the case of new available data and a correctly received last data

block, the current audio frame can be returned without further pro-

cessing.

Computing the prediction coefficients for several input audio

data streams is computationally expensive. A simple test setup on

a modern notebook with an Intel i3-3120M DualCore processor

and AoIP settings of 8 active receivers, using 3 concealment input

data blocks of length 256 samples, and a prediction order of 32
reveals that the AoIP tool requires about 70 % CPU load using the
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proposed concealment implementation. If the concealment is dis-

abled only 12 % are necessary. Although the computational effort

is large, the extrapolation is done in real-time allowing massive

sound quality improvement for erroneous network conditions.

6. CONCLUSIONS AND PROSPECTS

The problem of faulty audio material due to non-optimal network

conditions in an AoiP scenario is discussed in this paper. Kaup-

pinen’s approach of audio extrapolation seems to be a legit way

to perform error concealment in the case of packet loss or critical

packet delay. The basic idea of the extrapolation technique and

its integration in a possible AoIP framework is presented. Four

different prediction approaches to obtain a signal model for the

extrapolation process are investigated. The performance of the

predictors is evaluated in detail following objective and subjective

criteria. The objective assessment is done with a large-scale auto-

mated measurement with PEAQ over the SQAM data set. To judge

the subjective impact of the prediction technique a listening test

with 23 participants was applied. The conclusions of both eval-

uation strategies are consistent. The block-based methods (Burg

and ACM) appear to be very promising for the described purpose,

whereas the sample-based methods can’t be recommended, due to

their adverse performance (PNLMS) or their algorithmic complex-

ity (GAL). The results demonstrate the typical trade-off between

performance and computational complexity. ACM is clearly the

cheaper block-based prediction strategy but objectively and sub-

jectively worse rated than the Burg method, which was outstand-

ingly judged best by the listeners for all test items.

A possible implementation within a real-time AoIP software

is demonstrated. The high-quality concealment for multiple re-

ceivers is achievable in real-time but the computations are exten-

sive and therefore, consume a majority of the CPU resources. Op-

timizing the implementation and analyzing simplifications should

be done for inclusion in other projects. Typically, AoIP systems

include audio codecs to reduce the transmission data rate. Embed-

ding the proposed method within a prediction based audio codec

might lead to systems of higher efficiency, due to shared usage of

prediction filter coefficients. Perceptual audio codecs operate on

frequency-domain representations of the source signal. This addi-

tional information could also be utilized for enhanced concealment

schemes.
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Figure 8: Results of MUSHRA listening test
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